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Phase diagram of a quasi-two-dimensional colloid assembly

Derek Frydel and Stuart A. Rice
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA

~Received 9 July 2003; published 18 December 2003!

We report the results of simulations of the phase diagrams of a quasi-two-dimensional~Q2D! colloid
assembly and of a two-dimensional~2D! colloid assembly which have the same colloid-colloid interaction.
That interaction is the same as used in the study reported by Zangi and Rice@Phys. Rev. E58, 7529~1998!#.
Among the goals of the work reported are elucidation of the influence of small amplitude out-of-plane motion
on the phase diagram of a system and determination of the effect of that motion on the role of a hexatic phase
in the melting process. Both of the systems we have studied undergo a first-order solid I–solid II and solid
II–solid III isostructural transition induced by the attractive and repulsive components of the interaction,
respectively. Introduction of the out-of-plane motion shifts the low density portion of the phase boundaries
involving the solid II phase. The liquid–solid I coexistence line is nearly the same for the two systems. The
solid II–solid III transition is shifted to lower temperature and shifted to higher density in the quasi-two-
dimensional system. We further use the simulations to calculate the elastic constants, which can be used to
predict the location of the Kosterlitz-Thouless-Halperin-Nelson-Young~KTHNY ! melting transition. For the
Q2D system we find that the first-order melting transition preempts the KTHNY transition for the reduced
temperaturesT* 51.00, 0.60, and 0.50. For the 2D system, whenT* 50.60, the KTHNY transition barely
preempts the first-order melting transition and whenT* 51.00 and 0.50 the ordinary first-order transition
preempts the KTHNY transition.

DOI: 10.1103/PhysRevE.68.061405 PACS number~s!: 82.70.Dd, 64.70.Dv
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I. INTRODUCTION

It has been known for some time that the nature and
gree of spatial ordering that a molecular system supp
depend on the dimensionality of the space to which it
confined @1,2#. For example, in one- and two-dimension
systems fluctuations can destroy long-range order of cer
types. Consequently, the character of the phase transi
and the phase boundaries for one-, two-, and thr
dimensional systems composed of the same molecular
cies is different despite the common molecule-molecule
teractions.

Considerable attention has been focused on understan
the phase diagrams of strictly two-dimensional~2D! systems.
At present, the Kosterlitz-Thouless-Halperin-Nelson-You
~KTHNY ! theory@3–7# is the most widely accepted descri
tion of two-dimensional melting. This theory is based on
characterization of the two-dimensional solid as a defo
able medium with inclusion of the two classes of point top
logical defects with smallest excitation energy to medi
structural changes; it relates the melting process to the
chanical instability of the two-dimensional solid. Althoug
the theory allows for other possibilities@8,9#, it is commonly
taken to predict that a two-dimensional system that supp
only one ordered solid phase melts via sequential continu
phase transitions. The first transition is from the solid w
quasi-long-range positional order and long-range bond or
tation order to a phase with short-range positional order
quasi-long-range bond orientation order, the hexatic ph
This transition is driven by the dissociation of bound dis
cation pairs in the solid. The second transition transforms
hexatic phase to the liquid phase in which both positio
and bond orientation order have short range; it is driven
dissociation of individual dislocations to form disclination
1063-651X/2003/68~6!/061405~16!/$20.00 68 0614
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It has been established, from simulation studies, that
2D system the number and nature of the stable phases
sible and the orders of the transitions between those ph
depend on the range of the intermolecular interaction@10#.
Of particular interest to us is the case when the pair inter
tion has an attractive component and/or a soft repulsive c
ponent that has a range that is only a few percent of
molecular diameter. Interactions of this type are believed
be appropriate for the description of a class of colloid s
tems@11,12#. In this case, as shown by Bladon and Fren
@10#, the 2D colloid system supports an isostructural so
I–solid II transition. In the vicinity of the critical temperatur
for this isostructural transition, fluctuations can induce f
mation of a hexatic phase. These fluctuations can also in
ence the character of the phase transitions at lower dens
In fact, a two-dimensional system with an interaction of t
type described can exhibit first-order liquid-to-hexat
hexatic–solid I, and solid I–solid II transitions. Chou an
Nelson@13# extended the KTHNY theory to the case whe
the two-dimensional system supports two ordered so
phases by incorporating an explicit isostructural solid-
solid transition in their construction of the elastic free ener
Their analysis assumes that the elastic free energy of
system includes a term descriptive of the strain arising fr
the change in density associated with that transition. W
this assumption it is found that the modified KTHNY theo
can account for all of the essential results of the simulat
studies of Bladon and Frenkel. However, the Chou-Nels
analysis does not provide a microscopic explanation for
existence of the isostructural solid-to-solid phase transit
~which it assumes to exist!, i.e., it does not providea priori
guidance as to when the elastic free energy of a tw
dimensional system should or should not contain the e
contribution from the strain arising from the change in de
©2003 The American Physical Society05-1
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sity associated with an isostructural solid-to-solid transiti
When the interaction between particles is either of sho

or longer range than the type considered by Bladon
Frenkel the melting behavior of the two-dimensional syst
is different. For a system that contains hard disks the b
available evidence from studies of the elastic moduli s
gests that the KTHNY continuous transition from the solid
a liquid phase just barely preempts the solid-to-liquid fir
order transition. The available experimental data, obtai
from studies of a quasi-two-dimensional~Q2D! colloid as-
semblies, lead to the conclusion that the solid phase un
goes a first-order transition directly to the liquid phase. T
conclusion is not, despite appearances, in conflict with
theoretical studies of 2D hard disks for two reasons. Fi
the resolution of the system density in those experiments
only of order 2%. Second, and more important, we show
Sec. IV that the change from 2D to Q2D confinment alt
the character of the solid-to-hexatic transition. For a 2D s
tem in which the range of the attractive interaction betwe
particles is of the order of the particle diameter or grea
there is not isostructural solid-to-solid transition, and the b
available evidence suggests that the melting of the orde
phase to the liquid involves two continuous transitions, o
from the solid to the hexatic phase and another from
hexatic phase to the liquid.

Much less attention has been focused on understan
the phase diagrams of systems that are quasi-t
dimensional, i.e., those systems in which out-of-plane m
lecular motion cannot be eliminated. However, it is just t
class of systems that best represents experimental rea
tions of ‘‘two-dimensional matter.’’ The issue to be resolv
is whether the small amplitude out-of-plane molecular m
tion generates only small quantitative corrections to
phase diagram predicted under the assumption that the
lecular motion is strictly two dimensional, or if it generat
qualitative changes to that phase diagram. In an earlier p
@14# we reported the results of extensive simulations of s
eral phase transitions in a quasi-two-dimensional system
signed to mimic a real colloid assembly. The colloid-collo
interaction used in those simulations has an attractive c
ponent with a range that is only a few percent of the mole
lar diameter, and a soft repulsive component of compara
range that connects the attractive well and a very steep
pulsive interaction. The simulations were restricted to th
modynamic states with reduced temperatureT* 51 ~see the
next section for a definition!. The results of the simulation
establish the occurrence of first-order liquid-to-hexatic a
hexatic-to-solid transitions, in agreement with the expe
mental results of Marcus and Rice@12#. The results of the
simulations also reveal, at higher densities, an isostruct
solid-to-solid transition and a buckling transition, both
which are continuous. The dislocation pair, free dislocati
and free disclination concentrations found in the simulatio
do not satisfy the predictions of the KTHNY theory.

The research described in this paper addresses two q
tions. First, what is the topology of the full phase diagram
a Q2D colloid system with particle-particle interaction of t
type just described? Second, what is the difference in beh
ior of the elastic moduli of 2D and Q2D colloid assemblie
06140
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This paper reports the results of simulations of the mo
colloid assembly studied by Zangi and Rice@14# for a num-
ber of different temperatures, thereby permitting a mo
complete construction of its phase diagram. We also rep
the results of simulations of a model colloid assembly t
has the same interactions but which is constrained to h
strictly two-dimensional motion. A comparison of the pha
diagrams of the quasi-two-dimensional and strictly tw
dimensional systems reveals the influence of out-of-pl
motion on the locations of the phase boundaries and the a
ity of the system to support particular ordered arrangeme
of the particles. Overall, the most apparent macroscopic c
sequence of permitting out-of-plane motion, thereby conv
ing a 2D system to Q2D, is a shift of some of the pha
boundaries to higher densities. These shifts are most vis
for the low temperature–low density portion of the liquid
solid II transition line, and for the low temperature–low de
sity portion of the solid I–solid II transition line. As ex
pected, introduction of the out-of-plane motion increases
density range in which the liquid is stable. Simply put, at a
selected density at which the liquid is stable its entropy
increased by allowing out-of-plane motion. Similarly, allow
ing out-of-plane fluctuations in the solid I structure increas
its entropy and thereby extends the density range over w
it is stable. Eventually the density becomes so large that
puckered structure of solid II becomes unstable. The prec
ing comments describe the 2D and Q2D phase diagr
when T* ,0.5. ForT* .0.5 the liquid–solid I coexistence
region is very nearly the same for the 2D and Q2D syste

A comparison of the density dependencies of the ren
malized elastic moduli of the 2D and Q2D systems reve
the following. For the 2D system, when the reduced tempe
ture T* 50.60, the KTHNY transition barely preempts th
first-order melting transition from solid to hexatic, and wh
T* 51.00 and 0.50 the ordinary thermodynamic first-ord
transition from the solid to the hexatic phase preempts
KTHNY transition between those phases. On the other ha
for the Q2D system, we find that whenT* 50.50, 0.60, and
1.00 the ordinary thermodynamic first-order transition fro
the solid to the liquid phase preempts the KTHNY transiti
between those phases. Clearly, the change from 2D to Q
geometry has an important effect on the character of
phase transition in the system studied.

II. MODEL SYSTEM AND COMPUTATIONAL DETAILS

A. The model system

The model system studied in this paper is the same as
studied by Zangi and Rice@14#. The colloid-colloid interac-
tion used in the simulations has the form~see inset of Fig. 1
below!

u~r * !52« expF2S r * 2wc*

ww* D 4G12310219«S r * 2
1

2D 264

11.2« expF2S r * 20.96

0.074 D 8G . ~1!

In all that follows we will use the reduced variablesT*
5-2
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PHASE DIAGRAM OF A QUASI-TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 061405 ~2003!
5kBT/« andr* 5rs2, with r5N/A; the corresponding re
duced microscopic coordinates arer * 5r /s, z* 5z/s, m
51, with s the effective ‘‘hard-core’’ diameter,N the number
of particles, andA the area of the simulation cell. The firs
term in Eq. ~1! represents the attraction between bru
stabilized colloid particles when there is incipient overl
between the brushes attached to their surfaces; the dep
this attractive well is« and its width is ww/s5ww*
50.006, centered atwc* 51.05. The second term in Eq.~1!
is the core-core repulsion, which is the dominant contrib
tion to u(r * ) for colloid-colloid separationsr * <1. The
functional form chosen is very nearly a hard-core repuls
but has continuous derivatives. Using Eq.~1!, the colloid-
colloid interaction energy is 5.0« whenr * 51; for r * ,1 the
interaction energy increases very rapidly, hence the iden
cation ofs with an effective ‘‘hard-core’’ diameter. The las
term in Eq.~1! is an interpolating soft repulsion, representi
the entropy cost associated with interpenetration of the
bilizing brushes attached to the surfaces of the colloid p
ticles. We call the form displayed in Eq.~1! the MR poten-
tial.

The colloid particles were also subject to a one-body
ternal potential in thez direction, corresponding to their lo
calization in a cell of heightH/s5H* 51.2 ~see inset of
Fig. 3 below!:

uext~z* !5231024~z* !24. ~2!

We note thatz* is defined to be the distance from the cen
of the simulation cell to the center of mass of the collo
particle.

The model system studied in this paper is~except for the
size! the same as that studied by Zangi and Rice. For m
of the calculations it has 504 particles contained in a rec
gular box with side lengths in the ratiox/y57/(43));
other situations are described below. The height of the si
lation box,H, is fixed at 1.2s. Periodic boundary condition
were imposed on the simulation cell in thex andy directions,
but not in thez direction. The same number of particles w
present in the simulation cell for all of the densities studi
To change the system particle density we changed the are
the simulation cell.

We have used simulation cells with different numbers
particles for different purposes. All of the free energy calc
lations of the properties of the solid and liquid states
scribed below were carried out with 504 colloid particle
whereas the elastic constant calculations and the struc
factor calculations were carried out with 2016 particles.
the number of particles associated with a calculation is
explicitly mentioned, the default number is 2016.

The use of only 504-particle simulation samples to cal
late the free energies of the liquid and solid phases was
tated by the goal of our investigation, namely, determinat
of the phase diagram of the system over a range ofr* and
T* . In the studies reported in this paper the free energie
the phases were calculated by construction of a revers
path j from a reference state~I! with known free energy to
the state of interest~II !, which requires simulations for man
values ofj ~see below!. This requirement, coupled with th
06140
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time needed to simulate a system with 2016 particles, le
the decision to reduce the simulation sample to 504 partic
The disadvantage of this reduction in system size is,
course, the enhancement of finite-size effects.

B. Calculation of the phase diagram

To map the phase diagram of the colloid assembly
applied the common tangent construction to the free ene
densities of the two phases at fixed temperature, to obtain
densities of the coexisting phases. As the free energy ca
be measured directly in a simulation, we calculate it by th
modynamic integration along a defined thermodnamic pa
Specifically, we construct a reversible path between a re
ence state with known Helmholtz free energy and the stat
interest, and then evaluate

AII5AI1E
I

II

dj
]A~j!

]j
. ~3!

In Eq. ~3!, j is a continuous variable that parametrically co
nects the reference state I to the state of interest II. For a s
in the liquid phase with densityr and temperatureT we
choose the ideal gas at the same temperature as the refe
state; with this choicej5r. Then

A@r,T#5A@r ref ,T#1E
rref

r

dr8S ]A~r8!

]r8 D
T

. ~4!

Note thatr is defined asN/A for both 2D and Q2D colloid
assemblies. We taker ref in Eq. ~4! to be the density at which
our colloid system and an ideal gas are indistinguisha
Then, at the same temperature and density we can w
A@r ref ,T#5Aid@r ref ,T#; the subscript ‘‘id’’ indicates the
ideal gas. The free energy of the liquid is then representa
in the form

A@r,T#5Aid@r ref ,T#1E
rref

r

dr8S ]A~r8!

]r8 D
T

5Aid@r,T#2~Aid@r,T#2Aid@r ref ,T# !

1E
rref

r

dr8S ]A~r8!

]r8 D
T

5Aid@r,T#1E
rref

r

dr8F S ]A~r8!

]r8 D
T

2S ]Aid~r8!

]r8 D
T
G .

~5!

Using the substitution

~]A/]r!T5NkBT/r1N^Wl&/r
2, ~6!

where^Wl& is the lateral internal virial

^Wl&52
1

2 (
i , j

K qi j
2

r i j

]u~r i j !

]r i j
L , ~7!
5-3
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andqi j andr i j are the separations of particlesi andj in thexy
plane and in three-dimensional space, respectively, we g

A@r,T#5Aid@r,T#1E
rref

r

dr8
^Wl&
r8

. ~8!

The free energy of a 2D ideal gas is

Aid
2D5kBTN~ ln r21!12kBTN ln L, ~9!

and that of a Q2D ideal gas is

Aid
Q2D5kBTN~ ln r21!13kBTN ln L

2kBTN lnS E
2`

`

dzexp@2uext~z!/kBT# D , ~10!

whereL is the thermal de Broglie wavelength. For the pu
pose of determining phase equilibrium, the last term in
~9! and the last two terms in Eq.~10! can be omitted as the
reappear in the expressions for the free energy density o
2D and Q2D solids. Since a linear term inr in the free
energy density expression does not affect the common
gent construction, we findAid5Aid

2D5Aid
Q2D where

Aid5kBTN~ ln r21!. ~11!

The free energy density of the liquid then becomes

aliq@r,T#5kBTr~ ln r21!1A21E
rref

r

dr8
^Wl&
r8

. ~12!

As a practical procedure we fit polynomials to^Wl& obtained
from the simulations at different densities and then num
cally integrate Eq.~12!.

A different procedure was chosen for the calculation
the free energy of the solid. In this case we imagine that
interaction potential is continuously varied from that of t
reference system to that of the system under investigat
Then

AII5AI1E
I

II

dj K S ]U~j!

]j D L
j

, ~13!

in which the expectation value of]U(j)/]j is evaluated at
each pointj along the path I→II. For the reference state w
chose an Einstein crystal@15–17# with the same structure a
the solid phase under consideration. This reference sta
reached by slowly switching on harmonic interactions t
bind the particles to their lattice sites. We execute this p
cess via the linear bridging function

U~j!5j(
i , j

u~r i j !1~12j!(
i

a~qi2qi8!2. ~14!

In Eq. ~14!, qi is the vector position of a particle,qi8 is the
vector position of a lattice site in thexy plane, anda is twice
the harmonic force constant;q is expressed in reduced uni
~relative tos!; hencea has the dimensions of energy. In th
Q2D system all lattice sites are located in the planez50.
06140
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The bridging functionU(j) is the same for the 2D and Q2D
calculations. In the Q2D geometry, the external potential d
to the plate separation is unparametrized. Whenj50 the
system is an Einstein crystal,U(j50)5UE , and whenj
51 we recover the model systemU(j51)5UMR , where

UMR5(
i , j

u~r i j ! ~15!

and

UE5(
i

a~qi2qi8!. ~16!

The free energy of the solid is

A@r,T#5AE@r,T#1E
0

1

dj^UMR2UE&j . ~17!

Evaluation ofU(j) from Eq.~14! requires specification o
a. We obtained our parametrization using a variational p
cedure based on the Gibbs-Bogoliubov inequality@18#

A<AE~a!1^UMR&a ~18!

in which A is the free energy of the solid of interest,AE(a)
is the free energy of the Einstein crystal, and^¯&a denotes
an ensemble average for the Einstein crystal with force c
stant 2a. The value ofa is chosen to minimizeAE(a)
1^UMR&a at a given density and temperature. For a stric
two-dimensional system,̂UMR&a can be computed by per
forming a one-dimensional integration. The probability de
sity that in an Einstein crystal particlesi and j are separated
by a distanceqi j [uqi j u is

P~qi j !53a/kBT exp~2aD2/2kBT!qi j

3exp~2a/2kBTqi j
2 !I 0~aDqi j /kBT!. ~19!

In Eq. ~19!, D is the lattice constant andI 0 is the zero-order
modified Bessel function of the first kind. The reduced latt
constantD is computed for hexagonal packing~triangular
lattice symmetry! and is a function of the two-dimensiona
density. For the strictly two-dimensional system

^UMR&a5E
0

`

dqi j P~qi j !UMR~qi j !. ~20!

In this case the value ofa that minimizesAE(a)1^UMR&a is
easily and quickly determined. We used the same value oa
for the quasi-two-dimensional system with the same dens
The free energy of a 2D Einstein crystal with given value
a is

AE~a!5NkBT lnS a

pkBTD . ~21!

We omit from Eq.~21! terms that reappear in the liquid fre
energy expression as they play no role in locating the tra
tion line.
5-4
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The center of mass of the simulation sample was k
fixed throughout the calculations to prevent wandering of
system in thexy plane asj→1 causing the value of̂UE&j to
explode. Then, the free energy of the system with fixed c
ter of mass was corrected to account for that constraint.
free energy of a crystal with fixed center of mass is

Ac.m.~a!5AE
c.m.~a!1E dj^UMR2UE&j

c.m., ~22!

where the superscript c.m. denotes a fixed center of m
The Helmholtz free energy of an Einstein crystal with fix
center of mass is

AE
c.m.~a!5AE~a!2kBT lnS a

pNkBTD ~23!

with AE(a) given by Eq.~23!. The fixing of the center of
mass of the system in thexy plane eliminates two degrees o
freedom, so the free energies of two-dimensional and qu
two-dimensional crystals with and without fixed centers
mass differ bykBT ln A. The free energy density for th
crystal phase,a5A/A, is

a~r,T!5rkBT lnS a

pkBTD1rE
0

1

dj~^uMR&j2a^q2&j!

1
kBT

A lnS prkBT

a D . ~24!

In Eq. ~24! ^q2& is the mean square displacement in thexy
plane anduMR5N21UMR . The integral appearing in Eq
~24! was evaluated via a polynomial fit to ten values of t
integrand. For the strictly two-dimensional system all poi
at j50 were obtained from a one-dimensional integrat
using Eq.~19!.

Although it is convenient to choose the hard-disk syst
as reference when the thermodynamics of a dense str
two-dimensional system is studied, both because there
very accurate data available for its free energy as a func
of density@19# and because the thermodynamic properties
the hard-disk liquid can be obtained with good precis
from one or the other of several accurate analytical forms
the equation of state@20#, we have chosen differently. It i
because we are concerned with the contribution of the
of-plane motion to the thermodynamic properties of a qua
two-dimensional system that we have adopted the proce
described above. Then, so as to be able to consistently c
pare the properties of the quasi-two-dimensional and
strictly two-dimensional systems, we used the same pro
dure to calculate the free energy as a function of density
temperature for both systems.

C. Calculation of elastic constants

The KTHNY theory @5,6# of 2D melting predicts that a
continuous solid-to-hexatic transition occurs when
06140
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K5S 8

)
D 1

rkBT S m~m1l!

2m1l D516p, ~25!

wherem andl are the Lame´ elastic constants of our mode
solid. WhenK516p the solid becomes unstable with respe
to the proliferation of dislocations, quasi-long-range orde
destroyed and the system loses its resistance to shear s
However, a first-order melting transition may intercede b
fore a 2D solid reaches the point of dislocation binding
stability. It has been suggested by Chui@9# that melting of a
2D solid occurs when grain boundary~i.e., line defect! pro-
liferation occurs; he showed that grain boundary prolife
tion will occur before dislocation binding instability if the
core energy of a dislocation,Ec , is less than 2.84kBT.

So as to better compare the results of our simulations w
the predictions of the KTHNY theory of two-dimension
melting, we have calculated the Lame´ elastic constantsm and
l of our model solid. We describe first the calculation of t
bare elastic constants.

The shear modulusm was calculated from the measure
stress as a function of applied strain@21,22#. A uniform shear
strain was imposed on the simulation sample by modify
the boundary conditions via the following coordinate tran
formation:

x85x1«xyy,

y85y. ~26!

The stresstxy that is associated with the strain«xy is calcu-
lated from the ensemble average

txy5
1

A (
i , j

K xi j yi j

r i j

]u~r i j !

]r i j
L

«xy

, ~27!

whereA8 is the deformed area of the periodic simulation b
and, as usual,r i j 5ur i2r j u, xi j 5xi2xj , and yi j 5yi2yj .
When only a pure shear strain is applied to the simulat
cell A85A. To ensure that the applied shear strain produ
only a linear response in the simulation sample, and no p
tic flow, we restricted the shear strain applied to the simu
tion sample to be less than 2% and calculated the sh
modulus at a specified density for two or more distinct v
ues of the strain applied:

m5
txy~«xy!

«xy
1O~«xy!. ~28!

The second Lame´ constantl is related to the shear modulu
and the bulk modulus by

l5rS ]pl

]r D2m, ~29!

which is valid for a two-dimensional system. We calcula
the bulk modulus by fitting a convenient polynomial to th
lateral pressure versus density data obtained from the s
5-5



he
al

ar
ta
l

ar

ry
a

st
n
a
e
gt
ug
on
e
o
po
za
at

on

d
o

N
th

u-

ie
e-
-

-
si

ural
f

on,
om
ur

II

ol-
ases
pa-
rac-
ke

st

e-

f

ase
m-
an-
ltz

h
hase
s a
2D
ries

ti-
ot

e
is a
er-

ith
II
igh-
ms

igh-

e
ra-

2D
roxi-

D. FRYDEL AND S. A. RICE PHYSICAL REVIEW E68, 061405 ~2003!
lations, and then taking the derivative of that function. T
lateral pressurepl was calculated from the lateral intern
virial Wl @Eq. ~7!#

pl5NkBTr1A21^Wl&. ~30!

All of the elastic constant values reported in this paper
from simulations performed on a perfect defect-free crys
Bates and Frenkel@22# have shown that two-dimensiona
hard-disk systems with and without vacancies have ne
identical bare elastic constants.

As already noted, a key prediction of the KTHNY theo
is that continuous melting of a two-dimensional solid to
hexatic phase will occur when Eq.~25! is satisfied. Because
of fluctuations in the 2D and Q2D systems, the bare ela
constants described above are renormalized by lo
wavelength phonons and by the presence of defects. B
and Frenkel@22# have shown that the contribution to th
renormalization of the elastic constants by long-wavelen
phonons is very weak. They have also shown that altho
lattice defects have little influence on the bare elastic c
stants in the hard-disk system~and the same is true for th
systems we have studied! they make a large contribution t
the renormalization of the elastic constants, and are res
sible for a gross reduction of their values. The renormali
tion of the elastic constants by dislocations can be estim
using the KTHNY theory recursion relations@4–6#

]K21

] l
53py2 expS K

8p D F1

2
I 0S K

8p D2
1

4
I 1S K

8p D G ,
]y

] l
5S 22

K

8p D y12py2 expS K

16p D I 0S K

8p D , ~31!

where l is related to the linear dimension of the simulati
sample asl 5 ln(r/D), y5exp(2Ec /kBT) is the fugacity of the
dislocation pairs,Ec is the core energy of a dislocation, an
I 0 and I 1 are modified Bessel functions. The bare values
the elastic constants were used as initial data for the KTH
recursion relation. The core energy was obtained from
probability density~per unit area! of formation of a disloca-
tion pair @8,23#, namely,

pd5exp~22Ec /kBT!Z~K !,

Z~K !5
16)p2

K28p
I 0S K

8p DexpS K

8p D . ~32!

Values ofpd were determined by direct count from the sim
lation data.

III. PHASE EQUILIBRIA IN Q2D AND 2D COLLOID
ASSEMBLIES

It is relevant to recall the results of the simulation stud
of the model colloid assembly with the MR potential r
ported by Zangi and Rice@14#. Those calculations were re
stricted to the isothermT* 51.00. They found that at this
temperature and for densities up tor*50.90 the system sup
ports first-order liquid-to-hexatic and hexatic-to-solid tran
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tions. At higher densities the system supports an isostruct
solid I–solid II transition and a buckling transition, both o
which are continuous. The dislocation pair, free dislocati
and free disclination concentrations deviated seriously fr
those expected from the KTHNY theory. The results of o
simulations fill in the phase diagram forT* ,1.00. It is
found that the critical temperature for the solid I–solid
transition is aboutT* '0.6. The liquid–solid I–solid II triple
point temperature is aboutT* '0.45. ForT* ,0.6 both the
quasi-two-dimensional and the strictly two-dimensional c
loid assemblies support a liquid phase, and three solid ph
with hexagonal packing but different nearest neighbor se
rations. All of these phase transitions have first-order cha
ter. For T* .0.6 the structure of the phase diagram is li
that found by Zangi and Rice.

In the text to follow we discuss the distribution of neare
neighbor separations,P(r 12), and its relationship with the
MR potential. The distribution of nearest neighbors is d
fined by

P~r 12!5
1

N (
i 51

N
1

ni
(
j 51

ni

^d~r 122r i j !&, ~33!

where the sum overj is over theni nearest neighbors o
particlei, r i j is the distance between particlesi andj in thexy
plane, and the distribution alongz is

P~z!5
1

N (
i 51

N

^d~z2zi !&, ~34!

wherezi is the location of particlei alongz.
As noted in the last section, we have computed the ph

boundaries for the 2D and Q2D model systems by the co
mon tangent procedure. Prior to calculating the common t
gents, polynomial expressions were fitted to the Helmho
free energy density,a, as a function of density for eac
phase, and the pressure and chemical potential of a p
were calculated as functions of density. Figure 1 display
superposition of the phase boundaries in the 2D and Q
colloid assemblies we have studied. The phase bounda
near the liquid–solid I–solid II triple point and near the cri
cal point of the isostructural solid I–solid II transition are n
shown because they could not be accurately calculated~due
to fluctuations in the system!. The change in the phas
boundaries when a 2D system becomes a Q2D system
signature of the influence of out-of-plane motion on the th
modynamic properties of the system~the particles are the
same!.

As already mentioned, both the 2D and Q2D systems w
the MR potential support an isostructural solid I–solid
transition; the two solid phases have different nearest ne
bor separation distributions. In both the 2D and Q2D syste
the higher density solid phase~II ! close to the solid I–solid II
phase boundary has a unimodal distribution of nearest ne
bor separations with a narrow peak centered atr * 51.05
~Fig. 2!, which is the location of the attractive well in th
MR interaction. The distribution of nearest neighbor sepa
tions in the lower density solid phase, in both 2D and Q
systems, has two separated peaks connected by an app
5-6
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PHASE DIAGRAM OF A QUASI-TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 061405 ~2003!
FIG. 1. Phase boundaries for the 2D and Q2D systems.L, SI ,
SII , andSIII denote the stable liquid, solid I, solid II, and solid II
respectively. The solid III phase of the Q2D system is not indica
The dotted line connects the density points forT* 51.00, 0.60, and
0.50 where the square-root Lorentzian becomes a better fit tha
Lorentzian for theq-dependent structure function, thereby indica
ing the liquid-hexatic transition~Sec. V!. For both the 2D and Q2D
systems at all temperatures the density at which it occurs
r*50.8760.005. The inset contains the Marcus-Rice pair poten
uMR* (r * ), wherer * is the interparticle distance.

FIG. 2. Nearest neighbor separation distribution functions
the 2D and Q2D models for different densities atT* 50.55 and
0.50, respectively. At these temperatures the density ranges o
solid I–solid II coexistence regions are~1.00–1.047! and ~1.00–
1.050! for the 2D and Q2D systems, respectively.
06140
mately linear curve. The larger of the two peaks correspo
to the position of the attractive well in the MR interactio
and the smaller peak is centered atr * '1.2 which is larger
than the lattice constant. The twofold discrete characte
the nearest neighbor separation distribution indicates
creased density fluctuation due to the close vicinity of
critical point. As the density of a solid I approaches the so
I–solid II phase boundary the larger peak grows and
smaller peak becomes smaller until it almost completely d
appears and only the approximately linear connecting co
ponent remains. Of course, in the 2D system there is
out-of-plane motion. In the Q2D system the mean squ
amplitude of the out-of-plane motion in solid I is much larg
than that of the same motion in solid II. The data display
in Fig. 3 show that in the solid I–solid II coexistence regio
the mean square amplitude of out-of-plane displacem
^z* 2& is nearly density independent at all temperatures
r*,1.04, and that there is a small increase in the m
square amplitude of out-of-plane displacement with incre
ing temperature. However, close to the solid I–solid II pha
boundary, centered aroundr*51.05, there is a drastic de
crease in the mean square amplitude of out-of-plane
placement. In the vicinity of this density point the lattic
constant approaches a length that corresponds to the loc
of the attractive well in the MR potential. As density conti
ues to increase particles begin to separate into two layer
accommodate the increase in packing without losing the
ergetic advantage of placement in the attractive well of
MR potential. This separation is increasingly emphasiz
with decreasing temperature. Figure 4 displays the distri
tions of colloid particles alongz for several densities at fixed
temperature and several temperatures at fixed density. At
given temperature above the critical point the distributi
alongz separates into two layers with increasing density

.

he

is
l

r

he

FIG. 3. Mean square amplitude of out-of-plane displacemen
a function of density in the Q2D system.T* 50.65 is above the
solid I–solid II critical temperature,T* 50.60,0.50,0.45 spans th
range between the critical and the triple point temperatures,
T* 50.40 is below the triple point temperature. The inset conta
the colloid-wall potentialuext* (z* ), wherez* is the distance from
the center of the cell to the colloid particle.
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each particle becomes increasingly more confined to one
of the cell. Below the critical point the same behavior
observed separately for the solid I phase and the soli
phase but when solid I changes into solid II particles
forced into the center@Fig. 4~a!#. As temperature decrease
and the entropic demands of the system diminish, the di
bution alongz becomes even more centralized, so a grea
fraction of particles can occupy the attractive well of the M
potential@Fig. 4~b!#. The temperature dependent behavior
the distribution alongz is reversed at only slightly highe
density; particles become increasingly more confined to
side of the cell@Fig. 4~c!#.

In the solid I–solid II coexistence region in both the 2
and Q2D systems the longitudinal~in the plane! pressurepl
@Eq. ~30!# drops dramatically~Fig. 5!. As expected, as the
density is increased further there is a rapid rise in the lon
tudinal pressure in the Q2D system, but the derivat

FIG. 4. Distribution of colloid particles along thez axis ~a! at
T* 50.50 for various densities; bold and regular lines correspon
the solid I and solid II phase, respectively;~b! for solid II at
r*51.051 for various temperatures; and~c! for solid II at
r*51.059 for various temperatures.
06140
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(]pl /]r)T is much smaller for the Q2D system than for th
2D system. The rapid rise inpl signals the separation a
which there is onset of the repulsive component of the M
potential. In the Q2D case the stress induced by the repul
part of the MR potential is relieved via the system’s sepa
tion into two layers.

We note that the high density side of the solid I–solid
coexistence line is nearly vertical. For the strictly 2D syste
the density along this part of the coexistence line
r*51.047060.0005. For the Q2D system the density alo
this part of the coexistence line is slightly highe
r*51.050560.0005.

It is clear that converting a 2D system to a Q2D system
permitting out-of-plane motion leads to a shift of some of t
phase boundaries to higher density. These shifts are m
visible for the low density portion of the phase boundar
where solid II is involved. The coexistence region not i
volving solid II, the liquid–solid I coexistence, is very near
the same for the 2D and Q2D systems. The introduction
the out-of-plane motion increases the entropy of the ph
but the gain in entropy is uneven among different phas
The mean square amplitude of the out-of-plane displacem
is nearly density independent across the liquid–solid I co
istence as is the distribution alongz. However, when the
liquid or solid I crosses to the solid II phase the mean squ
amplitude of the out-of-plane displacement decreases~Fig.
3! and the distribution alongz ~Fig. 4! is forced into a mono-
layer aroundz50 so as to reduce interparticle distance,
lowing more particles to occupy the attractive well of th
MR potential; the entropy contribution to the free energy
sacrificed to gain the enthalpy contribution.

to

FIG. 5. Lateral pressurepl* versusr* for different temperatures
for the 2D and Q2D systems.
5-8



th
m
si
oli

t

-
nd
fre
o

os
co

III
tio
ra

iti
ur
ut
re
2

es

a

III
for
n.
2D
r
k
the

e-
re-
of
-
R
at
ini-

the
s-

.

ar-
in-
res
the

s
ion
tion

s
lt of
ar-
ng
nge
o-
o

in
au
ers

th

for
lid

n of

PHASE DIAGRAM OF A QUASI-TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 061405 ~2003!
Further information concerning differences between
phase diagrams of the 2D and Q2D model colloid syste
can be obtained from analysis of the free energy den
versus density curves. Figure 6 displays, for the solid I–s
II coexistence region,a* (r* )2gr* versusr* , whereg is
an arbitrary constant; the subtraction ofgr* from a* (r* )
does not change the common tangent construction. In
strictly 2D system there are either one (T* .0.60) or two
(T* ,0.60) minima of a* (r* ) in the density range dis
played. The density region between two minima correspo
to phase coexistence. At the critical temperature the two
energy minima merge into one. Clearly the critical point f
the solid I–solid II transition is close toT* 50.6 in this
system. In the Q2D system there are one (T* .0.60), two
(0.60.T* .0.53), or three (T* ,0.53) minima ofa* (r* )
in the density range displayed. For three minima two p
sible tangent constructions can be effected but only one
responds to stable phases.

Both the 2D and Q2D systems support solid II–solid
isostructural transitions at high density. This phase transi
can be inferred, for the 2D system, by examining the late
pressure in Fig. 5 and the phase boundaries of this trans
are indicated in Fig. 1 at densities higher than that of p
solid II; the critical temperature for this transition is abo
T* '0.45. Statistical fluctuations of the free energy p
vented us from computing the phase boundaries for the Q
system by the common tangent construction. Neverthel
the van der Waals loop of the lateral pressure atT* 50.25 for
the Q2D system~inset to Fig. 5! indicates the presence of

FIG. 6. Free energy densitya* minus the linear fitgr* vs r for
different temperatures for the 2D and Q2D systems displaying
solid I-solid II coexistence region.
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transition. To understand the nature of the solid II–solid
transition we concentrate on results for the 2D system
which the transition point can be identified with precisio
The distribution of nearest neighbor separations in the
system at the solid II–solid III transition is unimodal fo
solid II and bimodal for solid III with the much larger pea
corresponding to the minimum and the smaller peak to
soft repulsive component of the MR potential~Fig. 7!. As the
density of solid III increases, the distribution eventually b
comes unimodal with all interparticle separations cor
sponding to the position of the soft repulsive component
the MR potential. This indicates that solid II–solid III tran
sition is induced by the soft repulsive component of the M
potential; particles begin to climb the repulsive potential
high density when the lattice constant is less than the m
mum in the MR potential.

Another consequence of the repulsive component of
pair potential at high density for both the 2D and Q2D sy
tems is the condition (]pl /]T)r,0 as seen in Fig. 5
(]pl /]T)r,0 is equivalent to (]s/]r)T.0, wheres is the
entropy per particle. By climbing the repulsive potential p
ticles gain spatial freedom and the system’s entropy
creases. This condition appears to hold for all temperatu
studied in this paper and spans the density range from
close packed density tor*'1.1. When the temperature i
low enough, the soft repulsion component of the interact
is significant enough to induce a first-order phase transi
to the solid III phase.

In the Q2D system the solid II–solid III transition i
shifted to higher density and lower temperature as a resu
out-of-plane motion. Before particles start climbing the b
rier of the pair potential, they separate into two layers alo
z at both sides of the cell thereby extending the density ra
in which particles can occupy the minimum of the pair p
tential, hence shifting the solid II–solid III transition t
higher density. The lateral pressure of the Q2D system
Fig. 5 ~inset! displays two plateaus. The low density plate
corresponds to the separation of the solid II phase into lay

e

FIG. 7. Nearest neighbor separation distribution functions
the 2D system atT* 50.25 for various densities across the so
II–solid III coexistence region~1.051,r*,1.061!. Bold line cor-
responds to the nearest neighbor separation distribution functio
solid II.
5-9
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and the high density plateau corresponds to climbing the
repulsion of the pair potential.

IV. ELASTIC CONSTANTS: A TEST OF THE KTHNY
PREDICTIONS

Because of the prominent role in the KTHNY theory
2D melting that is played by renormalization of the syste
elastic constants, we have calculated the bare and renor
ized Laméconstants for the 2D and Q2D model syste
described in this paper. Our calculations of the bare ela
constants were based on simulation runs with the same n
ber of particles as lattice sites. In such a system the num
of vacancies must equal the number of interstitials at
times. The simulation was always started from the perf
defect-free, crystal obtained by straining the triangular latt
by «xy . We have verified, from model simulations with ar
ficially large numbers of vacancies, that for our systems
calculated bare elastic constants are insensitive to the p
ence of vacancies. The results of our calculations are
played in Table I, II, and III for the 2D system, for temper
turesT* 51.00, 0.60, and 0.50, respectively, and in Tab
IV, V, and VI for the Q2D system for temperaturesT*
51.00, 0.60, and 0.50, respectively. The uncertainties in
lateral pressurepl and shear modulusB quoted in these
tables are the statistical errors associated with finite time
lection of values of fluctuating quantities. The uncertain
quoted for the bulk modulus was estimated by changing
form of the polynomial fit to pressure. Note that we we
unable to calculate elastic constants very close to the tra
tion densities~located by the condition of equal pressure a

TABLE I. Lateral pressurepl* , shear modulusm* , bulk modu-
lus B* 5r* ]pl ,fit* /]r* , and elastic constantK/16p as a function of
the density for 2D atT* 51.00.

r* pl*
B*5r* S]pl,fit*

]r* D m* K/16p

0.890 8.70560.002 40.460.4 18.660.2 1.3260.04
0.900 9.15960.002 44.360.4 22.060.1 1.5060.03
0.910 9.67160.002 49.160.4 25.860.1 1.7060.03
0.920 10.24160.002 54.960.4 30.460.1 1.9660.03
0.930 10.87660.002 62.060.4 35.560.1 2.2360.03
0.940 11.58960.002 70.760.4 42.260.1 2.5860.04
0.950 12.39460.002 81.260.4 50.660.1 3.0160.04
0.960 13.30160.002 94.360.4 60.560.2 3.5360.04
0.970 14.36360.002 110.360.4 73.760.2 4.1860.04
0.980 15.58560.002 130.460.4 90.160.3 5.0260.04
0.990 17.02460.003 156.260.4 111.960.4 6.0560.05
1.000 18.76460.003 191.260.4 143.560.4 7.5360.05
1.010 20.91560.003 243.160.4 188.160.4 9.6560.05
1.020 23.71260.003 329.760.4 258.960.4 13.0660.06
1.030 27.61560.004 493.660.4 373.660.4 18.9760.06
1.040 33.78660.005 567.360.4
1.050 45.29860.005 864.560.8
1.060 64.34160.006 1048.760.8
06140
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chemical potential! of either system, although we could g
closer for the 2D than for the Q2D system. In neither syst
do the calculated values ofK/16p derived from the bare
elastic constants fall below unity before the transition dens
is reached.

We now consider the calculated values of the renorm
ized elastic constants. Figure 8 showsEc as a function of the
density for the 2D and Q2D systems. For both systems, n
the transition densityEc* /T* '6, a value safely larger than
the limit Ec* /T* 52.84 below which grain boundary prolif
eration is predicted to generate a first-order melting tran
tion. To obtain the dislocation unbinding melting density w
fitted our calculated values ofK and Ec as a functions of
density to convenient polynomials; these polynomial fi
were used as input data for the KTHNY recursion relatio
@Eq. ~31!#. The KTHNY recursion equations were the
solved numerically via Euler discretization to obtain t
renormalized value ofK5KR . Figure 9 displays the densit
dependencies ofKR for the 2D and Q2D systems. In eac

TABLE II. Lateral pressurepl* , shear modulusm* , bulk modu-
lus B* 5r* ]pl ,fit* /]r* , and elastic constantK/16p as a function of
the density for 2D atT* 50.60.

r* pl*
B*5r* S]pl,fit*

]r* D m* K/16p

0.900 4.99860.002 20.160.7 11.660.2 1.260.1
0.910 5.24560.002 22.860.4 13.960.2 1.4560.07
0.920 5.50960.002 25.960.4 16.360.1 1.6760.06
0.930 5.82660.002 29.460.4 19.660.1 1.9360.06
0.940 6.14960.002 33.260.4 23.560.1 2.2460.06
0.950 6.52460.002 37.660.4 28.360.1 2.6060.06
0.960 6.93460.002 42.560.4 34.260.1 3.0260.06
0.970 7.41460.002 48.060.4 42.560.1 3.5660.06
0.980 7.91060.003 54.160.4 53.260.1 4.1960.06
0.990 8.50260.003 64.760.4 68.860.2 5.0060.07
1.000 9.19160.003 68.760.4 89.660.3 5.9560.08
1.010 9.88660.003 77.260.4 124.660.4 7.2360.09
1.020 10.69960.004 86.760.4 186.760.4 8.8960.09
1.030 11.59860.005 97.360.4 31561 11.160.1
1.040 12.22260.008 78461
1.050 43.47460.007 370263
1.060 73.46160.006 134061

TABLE III. Lateral pressurepl* , shear modulusm* , bulk modu-
lus B* 5r* ]pl ,fit* /]r* , and elastic constantK/16p as a function of
the density for 2D atT* 50.50.

r* pl*
B*5r* S]pl,fit*

]r* D m* K/16p

0.910 4.02960.002 15.860.2 9.660.3 1.2060.07
0.920 4.19660.002 17.560.2 12.060.1 1.4260.05
0.930 4.40760.002 19.360.2 14.560.1 1.6460.05
0.940 4.62160.002 21.360.2 17.260.2 1.8660.05
0.950 4.85160.002 23.560.2 21.060.2 2.1560.05
0.960 5.12960.002 25.960.2 25.860.2 2.4760.05
5-10
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part of the figure the vertical lines mark the density at wh
we located a transition by use of the thermodynamic con
tion of equality of pressure and chemical potential. Start
with the 2D system, and moving from high to low densi
we find that whenT* 50.60 the KTHNY theory barely pre
empts the first-order melting transition from solid to hexat

TABLE IV. Lateral pressurepl* , shear modulusm* , bulk modu-
lus B* 5r* ]pl ,fit* /]r* , and elastic constantK/16p as a function of
the density for Q2D atT* 51.00.

r* pl*
B*5r* S]pl,fit*

]r* D m* K/16p

0.900 7.46060.003 35.060.2 16.760.1 1.3960.02
0.910 7.86260.003 38.760.2 19.960.1 1.5960.02
0.920 8.30860.003 43.260.2 23.160.1 1.8060.02
0.930 8.81060.003 48.660.2 27.360.1 2.0760.03
0.940 9.36560.003 55.260.2 31.860.1 2.3660.03
0.950 9.98760.004 63.160.2 38.060.1 2.7560.03
0.960 10.69660.004 72.660.2 45.260.1 3.2060.03
0.970 11.50760.004 84.160.2 54.660.1 3.7660.03
0.980 12.42760.004 97.960.2 66.660.1 4.4660.03
0.990 13.51560.004 117.560.2 82.660.1 5.4060.03
1.000 14.81860.004 142.160.2 103.960.2 6.6260.03
1.010 16.38760.005 175.960.2 132.160.3 8.2460.04
1.020 18.35460.005 227.660.2 174.860.3 10.6760.05
1.030 20.96760.005 316.960.2 240.960.4 14.6560.05
1.040 24.76460.005 345.960.7
1.050 30.87060.005 516.060.7
1.060 41.42960.005 719.260.8

TABLE V. Lateral pressurepl* , shear modulusm* , bulk modu-
lus B* 5r* ]pl ,fit* /]r* , and elastic constantK/16p as a function of
the density for Q2D atT* 50.60.

r* pl*
B*5r* S]pl,fit*

]r* D m* K/16p

0.900 4.10460.002 16.960.2
0.910 4.28360.002 18.760.2 10.660.1 1.3760.04
0.920 4.51160.002 20.760.2 12.660.1 1.5660.04
0.930 4.74460.002 23.060.2 15.060.1 1.8060.04
0.940 5.00660.002 25.860.2 17.860.1 2.0660.04
0.950 5.29960.002 29.060.2 21.160.1 2.3660.04
0.960 5.61560.003 32.860.2 24.960.2 2.7160.05
0.970 5.97660.003 37.360.2 31.460.1 3.2360.04
0.980 6.39960.003 42.660.2 39.060.1 3.8260.04
0.990 6.84460.003 48.960.2 48.660.2 4.5260.06
1.000 7.38460.003 56.360.2 63.260.3 5.4760.06
1.010 7.96760.003 65.060.2 85.960.3 6.7360.07
1.020 8.67460.004 75.260.2 120.360.7 8.3460.1
1.030 9.45660.004 87.360.2 189.260.7 10.6660.1
1.040 10.51760.005 34762
1.050 14.60860.007 112663
1.060 39.67360.009 141263
06140
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g
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and whenT* 51.00 and 0.50 the ordinary thermodynam
first-order transition from the solid to the hexatic phase p
empts the KTHNY transition between those phases. Our
sult for T* 50.60 is sensibly the same as found by Sengup
Nielaba, and Binder@23# and by Watanabeet al. @24# for the
2D assembly of hard disks. On the other hand, for the Q
system, again moving from high to low density, we find th
when T* 51.00 and 0.50 the ordinary thermodynamic firs
order transition from the solid to the hexatic phase preem
the KTHNY transition between those phases.

It is also interesting to examine the elastic constants

TABLE VI. Lateral pressurepl* , shear modulusm* , bulk
modulusB* 5r* ]pl ,fit* /]r* , and elastic constantK/16p as a func-
tion of the density for Q2D atT* 50.50.

r* pl*
B*5r* S]pl,fit*

]r* D m* K/16p

0.920 3.44060.002 14.160.2 9.260.2 1.3860.07
0.930 3.59560.002 15.660.2 11.260.1 1.5460.05
0.940 3.78160.002 17.160.2 13.260.1 1.7560.05
0.950 3.96060.002 18.860.2 16.060.1 2.0160.04
0.960 4.17160.002 20.760.2 19.460.1 2.3060.05
0.970 4.39960.002 22.760.2 23.460.1 2.6260.06
0.980 4.64760.002 24.960.2 29.160.2 3.0160.06
0.990 4.91760.002 27.260.2 36.560.2 3.4760.06
1.000 5.18060.002 29.860.2 48.060.2 4.0560.06

FIG. 8. Core energyEc* /T* for the 2D and Q2D systems a
T* 51.00, 0.60, and 0.50 as a function of density. Note t
Ec* /T* .2.84. The vertical lines mark the first-order meltin
density.
5-11
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temperatures below the estimated triple point tempera
T3* '0.45. The coexistence region forT* ,T3* differs from
that for T* .T3* in that the particle configurations clear
indicate the presence of two distinct phases. Wh
r*51.051, slightly above the melting densityrm(T* )
51.0505, we find thatK/16p575563. Moreover, as the
melting density is approached from aboveK/16p increases
~at r* 51.055,K/16p538164 and atr* 51.060,K/16p
518363) which is the opposite behavior to that observ
for temperatures aboveT3* .

For both the 2D and Q2D systems atT* 50.60 and 0.50
there is a density region of the solid I phase whereB,m
~Tables II, III, V, and VI!. The conditionB,m generates a
negative value for Poisson’s ratiosP5(B2m)/(B1m). A
solid that is characterized bysP,0 will, if stretched along
one direction, expand in the transverse direction.

At the critical pointB50 and in a finite region surround
ing the critical pointB is small enough that the combinatio
of elastic constants that definesK/16p is less than 1. Outside
this region, and close to the melting line, our calculatio
never yield a value ofK/16p that is less than 1. TheT*
50.60 isotherm of the 2D system displays a van der Wa
loop that is indicative of a first-order solid I–solid II trans
tion. The T* 50.62 isotherm of the 2D system no long
displays a van der Waals loop, and at the density that
isotherm is ‘‘flattest,’’ r*51.035, we find B* 516662,
m*545662, andK/16p519.660.4. TheT* 50.54 isotherm
of the Q2D system displays a van der Waals loop, wher

FIG. 9. Renormalization ofK/16p ~bold lines! obtained from
the recursion relation for the 2D and Q2D systems atT* 51.00,
0.60, and 0.50 as a function of density. Symbols indicate calcul
K/16p data points. Regular width lines are obtained from fitti
data points. The vertical lines mark the first-order melting densit
06140
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the T* 50.55 isotherm does not. At the density that this is
therm is ‘‘flattest,’’ r*51.040, we find B* 519.060.2,
m*532262, andK/16p53.660.1. It seems that the system
we have studied supports only a very small region w
K/16p,1, and the resolution in density of our simulation
fails to capture its presence.

V. IDENTIFYING THE HEXATIC PHASE

Arguably the most interesting feature of packing in
dense 2D system is the existence of a hexatic phase.
examined our simulation data with an eye toward identifyi
when a phase found in the 2D and Q2D systems we stu
has hexatic structure. To make this identification we exa
ined the bond orientation order, the structure function, a
the q-dependent shape of the diffraction peak for both
and Q2D systems.

We start our analysis with examination of the defect str
ture revealed by the Voronoi mapping of the real space c
figuration of the particles in the 2D and Q2D systems. T
mapping generates a space covering set of polygons. A
fect hexagonal crystal has a Voronoi map with only six-sid
figures. Polygons in the Voronoi map that have fewer
more than six sides are identified as defects. A decreas
temperature shiftsf 6(r* ) to greaterr* while keeping the
shape of the curve the same. One consequence of this sh
an increase in melting density with decreasing temperat
Figure 10 comparesf 6 in the 2D and Q2D systems as
function of density at several temperatures. Juxtaposition
the f 6(r* ) curves of the 2D and Q2D systems shows th
allowing out-of-plane motion~when 2D⇒Q2D! produces a
shift similar to that produced when the temperature is
creased in either of the model systems.

The local orientational order parameter for particlei is
defined by@5,6#

d

s.

FIG. 10. Fractions of six-coordinated particlesf 6 as a function
of density for the 2D and Q2D systems atT* 51.00, 0.60, and 0.50;
f 6(T* 50.60) and f 6(T* 50.50) are shifted byD f 650.05 and
D f 650.1, respectively, to capture the influence of the out-of-pla
motion for each temperature.
5-12
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c6,i[
1

ni
(
j 51

ni

exp~6iu i j !, ~35!

where the sum overj is over theni nearest neighbors o
particle i, and u i j is the angle formed by the line~bond!
between particlesi and j and an arbitrary but fixed referenc
direction. The global bond orientation order parameter is
fined by

C65U1

N (
i 51

N

c6,iU. ~36!

The susceptibility of the bond orientation parameterx6 ,
which measures the size of the fluctuations inC6 , is

x65N~^C6
2&2^C6&

2!. ~37!

For densities less than the transition densityr l→h , KTHNY
theory predicts that the bond orientation correlation funct
decays as exp(2r/j6) with a correlation length that diverge
asr→r l→h from lower density:

FIG. 11. Bond orientation parameter susceptibilityx6* as a func-
tion of density for the 2D and Q2D systems.
06140
-

n

j6~ t !5aj exp~bjt
21/2!. ~38!

The bond orientation parameter susceptibility also diver
as

x6~ t !5ax exp~bxt21/2!, ~39!

wheret[r l→h2r. In the hexatic phase the bond orientatio
correlation function decays asr 2h6(r); when r5r l→h the
value of the exponent ish651/4. In the thermodynamic
limit, both the liquid phase and the hexatic phase ha
^C6&50; hencex6 is nearly equal tô C6

2&. At the melting
density ^C6& assumes a finite value and increases tow
unity as the density increases. Near the freezing transition
j6 becomes comparable with a linear dimension of the sim
lation box, the model system becomes susceptible to an

FIG. 12. j6* and cx6 , c being an arbitrary constant, togethe
with the best fits for KTHNY behavior as a function of density f
the 2D and Q2D systems. The critical values ofr* are visualized by
vertical lines. Dotted vertical line is the freezing density from fr
energy calculation. We used points in the ranges 0.800<r*<0.850
and 0.800<r*<0.855 for the 2D and Q2D systems, respectively,
make the fit.
TABLE VII. r i* obtained from best fit for the critical behavior of the correlation lengthj6* and suscep-
tibility x6 .

System T Fit Range r i* Range r i* max(j6 /AA)

2D 1.00 j6 0.800–0.850 0.864 0.820–0.850 0.862 0.22
x6 0.800–0.850 0.865 0.820–0.850 0.864 0.22

Q2D 1.00 j6 0.800–0.855 0.869 0.820–0.855 0.868 0.22
x6 0.800–0.855 0.870 0.820–0.855 0.870 0.22
5-13
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physical transition. Discrimination between a real and an
physical transition requires a careful analysis of the s
dependence of the behavior of the system studied.

We now evaluate the parameters that appear in
KTHNY mechanical instability description of the meltin
transition and attempt to capture the temperature depen
behavior of the ‘‘would-be’’ transition density for compar
son with the temperature dependent freezing densities ev
ated from the thermodynamic criterion of phase equilibriu
namely, equality of the pressure and chemical potentials
the two phases. To accomplish this task we use the b
susceptibilityx6 and the correlation lengthj6 as monitors of
the transition. Moreover, we use only data for densit
where finite-size effects are minimal, that is, where the c
relation length is significantly smaller than the box ed
length. These data were fitted to Eqs.~38! and~39! to locate
the transition density. The correlation length was obtain
from fitting the bond orientation correlation function with a
ansatz of the form@25#

FIG. 13. q* -dependent structure functionS* (q* ) for densities
spanning the coexistence region,r*50.860, 0.870, and 0.880, fo
T* 51.00, 0.60, and 0.50 for the 2D system.S* (q* ) curves were
shifted to be fitted on one graph.
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g6~r !5ar2h6 exp~2r /j6!, ~40!

wherer is the actual particle-particle separation. The susc
tibility was calculated from its thermodynamic limitx6

5^C6
2&.

Figure 11 displaysx6 as a function of density at variou
temperatures for the 2D and Q2D systems. AsT* decreases
the divergence ofx6 is displaced to higher density, thereb
causing the density of the transition to increase. Note tha
any given temperature the passage from a 2D to a Q2D
tem produces a similar effect, namely, the high density lim
of the stability of the more disordered phase is increas
This behavior is in agreement with the results of our fr
energy calculations for these systems.

The j6 andx6 data were fitted to the analytic forms dis
played in Eqs.~38! and~39!, respectively, whereh6 was set
to 1/4. In each case the last data point used correspond
the last state point for which the instantaneous value ofC6

FIG. 14. q* -dependent structure functionS* (q* ) for densities
spanning the coexistence region,r*50.860, 0.870, and 0.880, fo
T* 51.00, 0.60, and 0.50 for the Q2D system.S* (q* ) curves were
shifted to be fitted on one graph.
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fluctuates around a single value~at the next data pointC6
fluctuates about two distinct values!. We found that the ratio
j6 /AA for the last usable data point is about 0.2. We n
that Jaster@25# employed a tighter bound, namely,j6 /AA
,0.06, to select simulation data that are free of finite-s
effects.

The results of the fits ofj6 andx6 for the 2D and Q2D
systems withT* 51.00 are collected in Table VII. The tran
sition densities obtained fromj6 are systematically lowe
than those obtained fromx6 by 0.001. A fitting that omits
some data points that are furthest from the transition den
shifts the predicted 2D transition density to slightly smal
values, but has no effect on the predicted Q2D transit
densities. The values ofj6 and x6 obtained in the fashion
described, and the fitted curves, are displayed in Fig.
These figures show that the transition density predicted
the KTHNY criterion falls in the coexistence region pr
dicted from the free energy calculations; the overestimate
the transition density is aboutdr*50.02.

We now examine the shapes of the peaks in the struc
function. In a conventional 2D or 3D liquid theq dependence
of S(q) near the peaks is well approximated by the Lore
zian function

S~q!}
1

~q2q0!21~1/j!
. ~41!

In contrast, close to the hexatic-liquid transition, in t
hexatic phase, theq dependence ofS(q) near the peaks is
predicted to have the form@26#

S~q!}F 1

~q2q0!21~1/j!G
1/2

, ~42!

where j is the positional correlation length andq0 is the
maximum of a peak. The structure function was calcula
by explicit evaluation of the expression

S~q!5N21K S (
i 51

N

cos~q•r i !D 2

1S (
i 51

N

sin~q•r i !D 2L ,

~43!
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where r is measured in thexy plane. In the hexatic phas
S(q) has sixfold modulation as a function of the angleuq

between a reference axis and the vectorq. The relevant func-
tion for our purpose is the average ofS(q) over the angular
range 0,uq,p/3:

S~q!5
3

p E
0

p/3

duqS~q!. ~44!

The results of this calculation ofS(q) and the fits of the
peaks to Eqs.~41! and~42! are shown for different tempera
tures and densities in Fig. 13 for the 2D system and in F
14 for the Q2D system. The solid and dashed lines are,
spectively, fits to the Lorentzian and square-root-Lorentz
line shapes. For the same thermodynamic state the first p
in the structure function of the Q2D system is broader th
the corresponding peak in the structure function of the
system. Regardless of temperature and dimensionality,
density at which the square-root-Lorentzian function p
vides a better fit to the peak shape isr*'0.87. Analysis of
the free energies of the liquid and solid phases yields a fi
order transition with liquid density that varies only slight
with temperature and dimensionality and isr*'0.85 as long
asT* >0.50. To better visualize the location of the liquid-t
hexatic transition determined from the fit to aq-dependent
structure function in relation to the liquid–solid I coexisten
region predicted from the free energy calculations we c
nect the density pointsr*50.87 atT* 51.00, 0.60, and 0.50
on the phase diagram graph~Fig. 1!.
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