PHYSICAL REVIEW E 68, 061405 (2003
Phase diagram of a quasi-two-dimensional colloid assembly
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We report the results of simulations of the phase diagrams of a quasi-two-dimen&g#ial colloid
assembly and of a two-dimension@D) colloid assembly which have the same colloid-colloid interaction.
That interaction is the same as used in the study reported by Zangi anfPRige Rev. 558, 7529(1999].

Among the goals of the work reported are elucidation of the influence of small amplitude out-of-plane motion
on the phase diagram of a system and determination of the effect of that motion on the role of a hexatic phase
in the melting process. Both of the systems we have studied undergo a first-order solid I-solid Il and solid
II—solid 11l isostructural transition induced by the attractive and repulsive components of the interaction,
respectively. Introduction of the out-of-plane motion shifts the low density portion of the phase boundaries
involving the solid Il phase. The liquid—solid | coexistence line is nearly the same for the two systems. The
solid ll-solid 1l transition is shifted to lower temperature and shifted to higher density in the quasi-two-
dimensional system. We further use the simulations to calculate the elastic constants, which can be used to
predict the location of the Kosterlitz-Thouless-Halperin-Nelson-Yo(KgHNY ) melting transition. For the

Q2D system we find that the first-order melting transition preempts the KTHNY transition for the reduced
temperature§™* =1.00, 0.60, and 0.50. For the 2D system, when=0.60, the KTHNY transition barely
preempts the first-order melting transition and when=1.00 and 0.50 the ordinary first-order transition
preempts the KTHNY transition.

DOI: 10.1103/PhysReVvE.68.061405 PACS nuni$)er82.70.Dd, 64.70.Dv

I. INTRODUCTION It has been established, from simulation studies, that in a
2D system the number and nature of the stable phases pos-
It has been known for some time that the nature and desible and the orders of the transitions between those phases
gree of spatial ordering that a molecular system supportdepend on the range of the intermolecular interacfiboi.
depend on the dimensionality of the space to which it isOf particular interest to us is the case when the pair interac-
confined[1,2]. For example, in one- and two-dimensional tion has an attractive component and/or a soft repulsive com-
systems fluctuations can destroy long-range order of certaiponent that has a range that is only a few percent of the
types. Consequently, the character of the phase transitiomsolecular diameter. Interactions of this type are believed to
and the phase boundaries for one-, two-, and threebe appropriate for the description of a class of colloid sys-
dimensional systems composed of the same molecular speems[11,17. In this case, as shown by Bladon and Frenkel
cies is different despite the common molecule-molecule inf{10], the 2D colloid system supports an isostructural solid
teractions. I-solid Il transition. In the vicinity of the critical temperature
Considerable attention has been focused on understandirfigr this isostructural transition, fluctuations can induce for-
the phase diagrams of strictly two-dimensio(2D) systems. mation of a hexatic phase. These fluctuations can also influ-
At present, the Kosterlitz-Thouless-Halperin-Nelson-Youngence the character of the phase transitions at lower densities.
(KTHNY) theory[3-7] is the most widely accepted descrip- In fact, a two-dimensional system with an interaction of the
tion of two-dimensional melting. This theory is based on atype described can exhibit first-order liquid-to-hexatic,
characterization of the two-dimensional solid as a deformhexatic—solid I, and solid I-solid Il transitions. Chou and
able medium with inclusion of the two classes of point topo-Nelson[13] extended the KTHNY theory to the case when
logical defects with smallest excitation energy to mediatethe two-dimensional system supports two ordered solid
structural changes; it relates the melting process to the mgshases by incorporating an explicit isostructural solid-to-
chanical instability of the two-dimensional solid. Although solid transition in their construction of the elastic free energy.
the theory allows for other possibiliti¢8,9], it is commonly  Their analysis assumes that the elastic free energy of the
taken to predict that a two-dimensional system that supportsystem includes a term descriptive of the strain arising from
only one ordered solid phase melts via sequential continuoutie change in density associated with that transition. With
phase transitions. The first transition is from the solid withthis assumption it is found that the modified KTHNY theory
guasi-long-range positional order and long-range bond orienzan account for all of the essential results of the simulation
tation order to a phase with short-range positional order andtudies of Bladon and Frenkel. However, the Chou-Nelson
quasi-long-range bond orientation order, the hexatic phasenalysis does not provide a microscopic explanation for the
This transition is driven by the dissociation of bound dislo-existence of the isostructural solid-to-solid phase transition
cation pairs in the solid. The second transition transforms théwhich it assumes to existi.e., it does not provide priori
hexatic phase to the liquid phase in which both positionaguidance as to when the elastic free energy of a two-
and bond orientation order have short range; it is driven bydimensional system should or should not contain the extra
dissociation of individual dislocations to form disclinations. contribution from the strain arising from the change in den-
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sity associated with an isostructural solid-to-solid transition.This paper reports the results of simulations of the model
When the interaction between particles is either of shortecolloid assembly studied by Zangi and Ride!] for a num-
or longer range than the type considered by Bladon andper of different temperatures, thereby permitting a more
Frenkel the melting behavior of the two-dimensional systerrcomplete construction of its phase diagram. We also report
is different. For a system that contains hard disks the bedhe results of simulations of a model colloid assembly that
available evidence from Studies Of the e|astic modu” Sughas the same interactions but which is constrained to have
gests that the KTHNY continuous transition from the solid toStrictly two-dimensional motion. A comparison of the phase
a liquid phase just barely preempts the solid-to-liquid first-diagrams of the quasi-two-dimensional and strictly two-
order transition. The available experimental data, obtainedimensional systems reveals the influence of out-of-plane
from studies of a quasi-two-dimension@2D) colloid as- _motlon on the locations of the ph_ase boundaries and the abil-
semblies, lead to the conclusion that the solid phase undefy of the system to support particular ordered arrangements
goes a first-order transition directly to the liquid phase. ThisCf the particles. Overall, the most apparent macroscopic con-
conclusion is not, despite appearances, in conflict with th&eduence of permitting out-of-plane motion, thereby convert-
theoretical studies of 2D hard disks for two reasons. FirstiNd & 2D system to Q2D, is a shift of some of the phase
the resolution of the system density in those experiments Wa@oundarles to higher densities. Th_ese shl_fts are mos_t v_|S|bIe
only of order 2%. Second, and more important, we show irfor the low temperature—low density portion of the liquid—
Sec. IV that the change from 2D to Q2D confinment altersS0lid Il transition line, and for the low temperature—low den-
the character of the solid-to-hexatic transition. For a 2D sysSity portion of the solid I-solid Il transition line. As ex-
tem in which the range of the attractive interaction betweerP&Cted, introduction of the out-of-plane motion increases the
particles is of the order of the particle diameter or greaterdensity range in which the liquid is stable. Simply put, at any
there is not isostructural solid-to-solid transition, and the besfelected density at which the liquid is stable its entropy is
available evidence suggests that the melting of the orderelffcréased by allowing out-of-plane motion. Similarly, allow-
phase to the liquid involves two continuous transitions, ondnd out-of-plane fluctuations in the solid I.structure increases
from the solid to the hexatic phase and another from thét§ entropy and thereby extends_the density range over which
hexatic phase to the liquid. it is stable. Eventually thg density becomes so large that the
Much less attention has been focused on understandi@v‘Ckered structure of_solld Il becomes unstable. The_preced-
the phase diagrams of systems that are quasi-twdld comments describe the 2D and Q2D phase diagrams
dimensional, i.e., those systems in which out-of-plane moWhenT*<0.5. ForT*>0.5 the liquid—solid I coexistence
lecular motion cannot be eliminated. However, it is just thisr€gion is very nearly the same for the 2D and Q2D systems.
class of systems that best represents experimental realiza- A comparison of the density dependencies of the renor-
tions of “two-dimensional matter.” The issue to be resolved Malized elastic moduli of the 2D and Q2D systems reveals
is whether the small amplitude out-of-plane molecular mo-{he following. For the 2D system, when the reduced tempera-
tion generates only small quantitative corrections to thdure T*=0.60, the KTHNY transition barely preempts the
phase diagram predicted under the assumption that the méjrst-order melting transition -from solid to hexatlg, apd when
lecular motion is strictly two dimensional, or if it generates 1~ =1.00 and 0.50 the ordinary thermodynamic first-order
qualitative changes to that phase diagram. In an earlier pap&@nsition from the solid to the hexatic phase preempts the
[14] we reported the results of extensive simulations of sevKTHNY transition between those phases. On the other hand,
eral phase transitions in a quasi-two-dimensional system ddor the Q2D system, we find that whéit =0.50, 0.60, and
signed to mimic a real colloid assembly. The colloid-colloid 1-00 the ordinary thermodynamic first-order transition from
interaction used in those simulations has an attractive confhe solid to the liquid phase preempts the KTHNY transition
ponent with a range that is only a few percent of the molecubetween those phases. Clearly, the change from 2D to Q2D
lar diameter, and a soft repulsive component of comparablgeometry has an important effect on the character of the
range that connects the attractive well and a very steep rdthase transition in the system studied.
pulsive interaction. The simulations were restricted to ther-
modynamic states with reduced temperaflife=1 (see the II. MODEL SYSTEM AND COMPUTATIONAL DETAILS
next section for a definition The results of the simulations
establish the occurrence of first-order liquid-to-hexatic and
hexatic-to-solid transitions, in agreement with the experi- The model system studied in this paper is the same as that
mental results of Marcus and Ri¢&2]. The results of the studied by Zangi and Ricl4]. The colloid-colloid interac-
simulations also reveal, at higher densities, an isostructurdlon used in the simulations has the fofsee inset of Fig. 1
solid-to-solid transition and a buckling transition, both of below)
which are continuous. The dislocation pair, free dislocation, . 4
and free disclination concentrations found in the simulationsu(r*): e ex;{ _(r —wc )
do not satisfy the predictions of the KTHNY theory. w*
The research described in this paper addresses two ques- . 8
tions. First, what is the topology of the full phase diagram for +1.2 exp{ _ (r _0-96> } )
a Q2D colloid system with particle-particle interaction of the ' 0.074 '
type just described? Second, what is the difference in behav-
ior of the elastic moduli of 2D and Q2D colloid assemblies?In all that follows we will use the reduced variabl@s

A. The model system

1 —64
+2X 10_198( r*— 5)
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=kgT/e and p* = pa?, with p=N/A; the corresponding re- time needed to simulate a system with 2016 particles, led to
duced microscopic coordinates ar&=r/o, z*=2z/c, m the decision to reduce the simulation sample to 504 particles.
=1, with o the effective “hard-core” diameteN the number The disadvantage of this redgction in system size is, of
of particles, andA4 the area of the simulation cell. The first course, the enhancement of finite-size effects.

term in Eq. (1) represents the attraction between brush-

stabilized colloid particles when there is incipient overlap B. Calculation of the phase diagram

between the brushes attached to their surfaces; the depth of
this attractive well ise and its width is ww/o=ww*
=0.006, centered atc* =1.05. The second term in E¢)

is the core-core repulsion, which is the dominant contribu
tion to u(r*) for colloid-colloid separationg*=<1. The
functional form chosen is very nearly a hard-core repulsio
but has continuous derivatives. Using Ed), the colloid-
colloid interaction energy is 5s0whenr* =1; forr* <1 the
interaction energy increases very rapidly, hence the identifi
cation of o- with an effective “hard-core” diameter. The last
term in Eq.(1) is an interpolating soft repulsion, representing o 9A(é)
the entropy cost associated with interpenetration of the sta- A=A+ f d g€
bilizing brushes attached to the surfaces of the colloid par-

ticles. We call the form displayed in E¢l) the MR poten- . . . .
pay @ P In Eq. (3), £is a continuous variable that parametrically con-

tial. )
The colloid particles were also subject to a one-body exlects the reference state | to the state of interest Il. For a state

ternal potential in the direction, corresponding to their lo- in the I|qU|o_I phase with density and temperaturd” we
calization in a cell of height/oc=H*=1.2 (see inset of choose the ideal gas at the same temperature as the reference

To map the phase diagram of the colloid assembly we
applied the common tangent construction to the free energy
densities of the two phases at fixed temperature, to obtain the
‘densities of the coexisting phases. As the free energy cannot
be measured directly in a simulation, we calculate it by ther-
r}nodynamic integration along a defined thermodnamic path.
Specifically, we construct a reversible path between a refer-
ence state with known Helmholtz free energy and the state of
interest, and then evaluate

©)

Fig. 3 below: state; with this choic&=p. Then
o 21)=2X 1021 ) @ vt I T e I
1 1 ap/ .
Pref T

We note thatz* is defined to be the distance from the center

of the simulation cell to the center of mass of the colloid \gte thatp is defined asN/A for both 2D and Q2D colloid
particle. o , assemblies. We take. in Eq. (4) to be the density at which

~ The model system studied in this papeKescept for the o1 colloid system and an ideal gas are indistinguishable.
sizg) the same as that studied by Zangi and Rice. For manyhen at the same temperature and density we can write
of the calculations it has 504 particles contained in a rectanA[pref T]=Adlprer, T]; the subscript “id” indicates the
gular box with side lengths in the ratio/y=7/(4Xv3);  jdeal gas. The free energy of the liquid is then representable
other situations are described below. The height of the simuy, the form

lation box,H, is fixed at 1.2. Periodic boundary conditions
were imposed on the simulation cell in tk@ndy directions, p IA(p")

o {75
fpref T

but not in thez direction. The same number of particles was A[p, T]=Ay[ pref. T+
present in the simulation cell for all of the densities studied.
;oecshi?nnlﬂzﬂtgﬁ i)e/ﬁfem particle density we changed the area of —Adp.T]= (Adp T1= Al pret, T])
We have used simulation cells with different numbers of p IA(p")
particles for different purposes. All of the free energy calcu- +f d ’(T>
lations of the properties of the solid and liquid states de- Pref P
scribed below were carried out with 504 colloid particles,

ap’

, : p L [[9Ap") dAig(p")
whereas the elastic constant calculations and the structure =Aidp,T]+ dp oo iy .
factor calculations were carried out with 2016 particles. If Pref Py P T
the number of particles associated with a calculation is not (5)

explicitly mentioned, the default number is 2016.

The use of only 504-particle simulation samples to calcuysing the substitution
late the free energies of the liquid and solid phases was dic-
tated by the goal of our investigation, namely, determination (0A13p)r=NkgT/p+N(OM)/p?, 6)
of the phase diagram of the system over a rangg*o@nd
T*. In the studies reported in this paper the free energies q}‘v
the phases were calculated by construction of a reversible
path ¢ from a reference stat@) with known free energy to 2
the state of interegtl), which requires simulations for many W)y=— EE <q_'J ‘9U(rij)> @
values of¢ (see below. This requirement, coupled with the 2 rij arg |

here(W,) is the lateral internal virial

i<j
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andg;; andrj; are the separations of particlieand;j in thexy
plane and in three-dimensional space, respectively, we get

B P M)
Alp, T]=Alp, TI+ | dp'—F. )
Pref
The free energy of a 2D ideal gas is
Id —kBTN(|np 1)+2kBTN|nA (9)

and that of a Q2D ideal gas is

A3P=kTN(Inp—1)+3kgTNIn A
—kBTNIn(f dzexd —Ue(2)/kgT]|, (10)

where A is the thermal de Broglie wavelength. For the pur-

pose of determining phase equilibrium, the last term in Eq.

(9) and the last two terms in EL0) can be omitted as they

reappear in the expressions for the free energy density of the

2D and Q2D solids. Since a linear term jnin the free
energy density expression does not affect the common ta
gent construction, we findy,=A2"=A%?° where

Ag=kgTN(Inp—1). (12)
The free energy density of the liquid then becomes

" dp 3 ,'>. (12)
p

Pref

a"p, T]=kgTp(lnp—1)+ A1

As a practical procedure we fit polynomials(fd/) obtained
from the simulations at different densities and then numeri=
cally integrate Eq(12).

A different procedure was chosen for the calculation of
the free energy of the solid. In this case we imagine that the

interaction potential is continuously varied from that of the

reference system to that of the system under investigation.

Then

I aU

&

),

in which the expectation value afUJ(£)/d¢ is evaluated at

each point¢ along the path--1l. For the reference state we
chose an Einstein crystfl5—17 with the same structure as
the solid phase under consideration. This reference state

PHYSICAL REVIEW E68, 061405 (2003

The bridging functiorlJ (£) is the same for the 2D and Q2D
calculations. In the Q2D geometry, the external potential due
to the plate separation is unparametrized. Wigen0 the
system is an Einstein crystdl(¢é=0)=Ug, and whené¢

=1 we recover the model systeld(é=1)=Uyr, Where

Uyr= 2, u(rij) (15)
i<j
and
uE=Ei algi—q)). (16)
The free energy of the solid is
1
Al TI=AdpTI+ [ d&(Une-Ug). @17

Evaluation ofU(£) from Eq.(14) requires specification of
a. We obtained our parametrization using a variational pro-

ﬁ:_edure based on the Gibbs-Bogoliubov inequdlit§]

A<Ag(a)+(Uyr)a (18

in which A is the free energy of the solid of interest;(«)

is the free energy of the Einstein crystal, anet), denotes

an ensemble average for the Einstein crystal with force con-
stant Zx. The value ofa is chosen to minimizeAg(a)
+(Uyr)« at a given density and temperature. For a strictly
two-dimensional system{;Uyr). can be computed by per-
forming a one-dimensional integration. The probability den-
sity that in an Einstein crystal particlesandj are separated
by a distancey;; =|q;;| is

P(dij) =3al/kgT exp( — aA?/2kgT)q;;

X exp(— al2kgTaf)lo(aAq; /keT).  (19)

In Eqg. (19), A is the lattice constant ang is the zero-order
modified Bessel function of the first kind. The reduced lattice
constantA is computed for hexagonal packirgriangular
lattice symmetry and is a function of the two-dimensional
density. For the strictly two-dimensional system

(Umr) o= fo da;; P(dij) Umr(4;j)- (20)

is

reached by slowly switching on harmonic interactions thatin this case the value ef that minimizesAg(a) + (U yR), is
bind the particles to their lattice sites. We execute this proeasily and quickly determined. We used the same value of

cess via the linear bridging function

U(f):‘% u(rij>+<1—§>2i algi—q)% (14

In Eq. (14), q; is the vector position of a particley is the
vector position of a lattice site in they plane, andx is twice
the harmonic force constard;is expressed in reduced units
(relative too); hencea has the dimensions of energy. In the
Q2D system all lattice sites are located in the plare0.

for the quasi-two-dimensional system with the same density.
The free energy of a 2D Einstein crystal with given value of

a |

We omit from Eq.(21) terms that reappear in the liquid free
energy expression as they play no role in locating the transi-
tion line.

AE(a’):NkBTIn( (21)

a
7TkBT
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The center of mass of the simulation sample was kept 8 1 [ p(u+n)
fixed throughout the calculations to prevent wandering of the = ( —) T (ﬁ =16, (25
system in thexy plane a—1 causing the value dUg); to V3 PKe M

explode. Then, the free energy of the system with fixed cen-

ter of mass was corrected to account for that constraint. Th@herex and\ are the Lameelastic constants of our model
free energy of a crystal with fixed center of mass is solid. WhenK = 164 the solid becomes unstable with respect

to the proliferation of dislocations, quasi-long-range order is
destroyed and the system loses its resistance to shear stress.
ASM( @)= Em'(a)-l-f d§(UMR—UE>§'m', (22) However, a first-order melting transition may intercede be-
fore a 2D solid reaches the point of dislocation binding in-
stability. It has been suggested by Ch@ij that melting of a
where the superscript c.m. denotes a fixed center of massp solid occurs when grain boundafiye., line defect pro-
The Helmholtz free energy of an Einstein crystal with fixed|iferation occurs; he showed that grain boundary prolifera-
center of mass is tion will occur before dislocation binding instability if the
core energy of a dislocatiof,., is less than 2.84T.
om a So as to better compare the results of our simulations with
Ag(a)=Ag(a)—kgTIn TNKaT (23)  the predictions of the KTHNY theory of two-dimensional
8 melting, we have calculated the Larakastic constantg and

. . . X\ of our model solid. We describe first the calculation of the
with Ag(a) given by Eq.(23). The fixing of the center of bare elastic constants.

mass of the system in they plane eliminates two degrees of 15 shear modulug was calculated from the measured

freedom, so the free energies of two-dimensional and quaskyess as a function of applied stréti,22. A uniform shear
two-dimensional crystals with and without fixed centers ofg; i \was imposed on the simulation sample by modifying

mass differ bykgTIn.A. The free energy density for the o houndary conditions via the following coordinate trans-
crystal phasea=A/A, is

formation:
a 1 X' =X+eyyY,
a(p,T)=pkgT In(’JTk—BT + PJO dé((Umr)e— (%))
y'=y. (26)
kBT 7TpkBT
* 7'” a | (24 The stressr,, that is associated with the straif, is calcu-

lated from the ensemble average

In Eq. (24) (g°) is the mean square displacement in #ye 1

plane anduyr=N"1Uyr. The integral appearing in Eq. T 2_2 <M M> (27)
(24) was evaluated via a polynomial fit to ten values of the YA Fij ai |, ’

integrand. For the strictly two-dimensional system all points

at ¢&=0 were obtained from a one-dimensional integrationyyhere A’ is the deformed area of the periodic simulation box
using Eq.(19). _ . and, as usualr;=|r;—r;|, xj=x—;, andy;=y;—y;.
Although it is convenient to choose the hard-disk systemyhen only a pure shear strain is applied to the simulation
as reference when the thermodynamics of a dense strictiye|| 4'=4. To ensure that the applied shear strain produced
two-dimensional system is studied, both because there aggy a linear response in the simulation sample, and no plas-
very accurate data available for its free energy as a functiog). flow, we restricted the shear strain applied to the simula-
of density[19] and because the thermodynamic properties otjgn sample to be less than 2% and calculated the shear

the hard-disk liquid can be obtained with good precisionmoqulus at a specified density for two or more distinct val-
from one or the other of several accurate analytical forms fofes of the strain applied:

the equation of statg20], we have chosen differently. It is

because we are concerned with the contribution of the out- T €0)

of-plane motion to the thermodynamic properties of a quasi- p=—2"10(e,y). (28)
two-dimensional system that we have adopted the procedure Exy

described above. Then, so as to be able to consistently com- , .
pare the properties of the quasi-two-dimensional and th he second Lameonstant\ is related to the shear modulus
strictly two-dimensional systems, we used the same proceelnd the bulk modulus by

dure to calculate the free energy as a function of density and

temperature for both systems. A= p( (Z—F;') - K, (29

xy

C. Calculation of elastic constants which is valid for a two-dimensional system. We calculate

The KTHNY theory[5,6] of 2D melting predicts that a the bulk modulus by fitting a convenient polynomial to the
continuous solid-to-hexatic transition occurs when lateral pressure versus density data obtained from the simu-
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lations, and then taking the derivative of that function. Thetions. At higher densities the system supports an isostructural
lateral pressurep, was calculated from the lateral internal solid I-solid Il transition and a buckling transition, both of

virial W, [Eq. (7)] which are continuous. The dislocation pair, free dislocation,
. and free disclination concentrations deviated seriously from
P =NkgTp+ A" (W). (30 those expected from the KTHNY theory. The results of our

. s simulations fill in the phase diagram far* <1.00. It is
Al qf the glastlc constant values reported in this paper a'%5und that the critical temperature for the solid 1-solid Il

from simulations performed on a perfect defect-free CryStaltransition is abouT™* ~0.6. The liquid—solid I-solid Il triple

Bates and Frenke]22] have shown that two-dimensional oint temperature is al:.)o.l]T*~O45 ForT* <0.6 both the

hard-disk systems with and without vacancies have nearl uasi-two-dimensional and the strictly two-dimensional col-

identical bare elastic constants. loid assemblies support a liquid phase, and three solid phases
As already noted, a key prediction of the KTHNY theory with hexagonal packing but different nearest neighbor sepa-

IS tha_t contlnuoqs melting of a two ¢men_spnal solid to Arations. All of these phase transitions have first-order charac-
hexatic phase will occur when ER5) is satisfied. Because % . o
: . ter. ForT*>0.6 the structure of the phase diagram is like
of fluctuations in the 2D and Q2D systems, the bare elasti : X
at found by Zangi and Rice.

constants described above are renormalized by long- ; e
wavelength phonons and by the presence of defects. Bates In the text to follow we discuss the distribution of nearest
and Frenkel[22] have shown that the contribution to. the fieighbor s'eparations.t?(r'lz),' and its relationship with 'the
renormalization of the elastic constants by long-wavelengt I\i/lnlzdpt())tentlal. The distribution of nearest neighbors is de-
phonons is very weak. They have also shown that althoug y
lattice defects have little influence on the bare elastic con- 1N N
stants in the hard-disk systeand the same is true f(_)r the P(rqyp) = NE Fz (8(rio—ri))), (33
systems we have studiethey make a large contribution to i=1Njj=1
the renormalization of the elastic constants, and are respon—h th - th t neiahb f
sible for a gross reduction of their values. The renormalizalV e_rel the s_urr;] Ozj’q IS ovgr en nea_reis r:jg_g hors 0
tion of the elastic constants by dislocations can be estimateﬁf‘rt'c el, I;.';j Etde' '.Sga’?‘:e Ietwe_en particleandj in thexy
using the KTHNY theory recursion relatiofié—6] plane, and the distribution alongs

N

oK1 K\[1 (K} 1 (K 1
- 2 Dy =) =Dy — P(z2)= - 8z—7z)), 34
=3y exp(gw) 2I0(87T) 4|1<8W”, (2= 2, (9(z=2)) (34)
ay K K wherez; is the location of particlé alongz
as 2— g)w 2my? ex;{ E) lo g) (31 As noted in the last section, we have computed the phase

boundaries for the 2D and Q2D model systems by the com-

wherel is related to the linear dimension of the simulation MON tangent procedure. Prior to calculating the common tan-
sample a$=In(r/A), y=exp(E,/kgT) is the fugacity of the gents, polynomlal_expressmns were fitted to _the Helmholtz
dislocation pairsE, is the core energy of a dislocation, and ffé€ energy densitya, as a function of density for each

I, and|, are modified Bessel functions. The bare values ofPhase, and the pressure and chemical potential of a phase
the elastic constants were used as initial data for the KTHNYVere calculated as functions of density. Figure 1 displays a

recursion relation. The core energy was obtained from th§UPerposition of the phase boundaries in the 2D and Q2D

probability density(per unit areaof formation of a disloca- colloid assemblies we have studied. The phase boundaries
tion pair[8,23, namely, near the liquid—solid I-solid Il triple point and near the criti-

cal point of the isostructural solid I-solid Il transition are not

pg=exp —2E./kgT)Z(K), shown because they could not be accurately calculatee
to fluctuations in the system The change in the phase
16v3 72 K K boundaries when a 2D system becomes a Q2D system is a
Z(K)= K——&TIO(E) EXF{ 8_) (32)  signature of the influence of out-of-plane motion on the ther-

modynamic properties of the systefthe particles are the

Values ofpy were determined by direct count from the simu- Same.
lation data. As already mentioned, both the 2D and Q2D systems with
the MR potential support an isostructural solid I—solid Il
transition; the two solid phases have different nearest neigh-
bor separation distributions. In both the 2D and Q2D systems
the higher density solid phasgk) close to the solid I-solid Il

It is relevant to recall the results of the simulation studiesphase boundary has a unimodal distribution of nearest neigh-
of the model colloid assembly with the MR potential re- bor separations with a narrow peak centered *at1.05
ported by Zangi and RicEl4]. Those calculations were re- (Fig. 2), which is the location of the attractive well in the
stricted to the isothernT* =1.00. They found that at this MR interaction. The distribution of nearest neighbor separa-
temperature and for densities upgb=0.90 the system sup- tions in the lower density solid phase, in both 2D and Q2D
ports first-order liquid-to-hexatic and hexatic-to-solid transi-systems, has two separated peaks connected by an approxi-

IIl. PHASE EQUILIBRIA IN Q2D AND 2D COLLOID
ASSEMBLIES
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FIG. 1. Phase boundaries for the 2D and Q2D systéms, FIG. 3. Mean square amplitude of out-of-plane displacement as
S,, andS,, denote the stable liquid, solid I, solid 11, and solid 11, @ function of density in the Q2D systerii* =0.65 is above the
respectively. The solid 11l phase of the Q2D system is not indicatedsolid I—solid Il critical temperatureT* =0.60,0.50,0.45 spans the
The dotted line connects the density points Tér=1.00, 0.60, and  fange between the critical and the triple point temperatures, and
0.50 where the square-root Lorentzian becomes a better fit than the" = 0-40 is below the triple point temperature. The inset contains
Lorentzian for theg-dependent structure function, thereby indicat- the colloid-wall potentialug,(z*), wherez* is the distance from
ing the liquid-hexatic transitiofSec. \). For both the 2D and Q2D the center of the cell to the colloid particle.
systems at all temperatures the density at which it occurs is

Pi:0;87i0-005- The inset contains the Marcus-Rice pair potentialmately linear curve. The larger of the two peaks corresponds
Uwr(r™), wherer® is the interparticle distance. to the position of the attractive well in the MR interaction
and the smaller peak is centeredrét=1.2 which is larger
than the lattice constant. The twofold discrete character of
A ' 2D [— p*=0.960 the nearest neighbor separation distribution indicates in-
T*=0.55 |--- p*=1.00011 creased density fluctuation due to the close vicinity of the
- p*=1.047| - . . . .
....... p*=1.050| | critical point. As the density of a solid | approaches the solid
I-solid Il phase boundary the larger peak grows and the
smaller peak becomes smaller until it almost completely dis-
appears and only the approximately linear connecting com-
ponent remains. Of course, in the 2D system there is no
7 out-of-plane motion. In the Q2D system the mean square
\ amplitude of the out-of-plane motion in solid | is much larger
7 than that of the same motion in solid Il. The data displayed
L ] in Fig. 3 show that in the solid I-solid Il coexistence region
A : - the mean square amplitude of out-of-plane displacement
T*_8251(3) - S:jg% ] (z*?) is nearly density independent at all temperatures for
% - pr=1.050| | p*<1.04, and that there is a small increase in the mean
o pr=1.054 square amplitude of out-of-plane displacement with increas-
] ing temperature. However, close to the solid I1-solid Il phase
7 boundary, centered arounst =1.05, there is a drastic de-
’ crease in the mean square amplitude of out-of-plane dis-
/ e placement. In the vicinity of this density point the lattice
(\ . constant approaches a length that corresponds to the location
of the attractive well in the MR potential. As density contin-
E ] ues to increase particles begin to separate into two layers to
% accommodate the increase in packing without losing the en-
ergetic advantage of placement in the attractive well of the
MR potential. This separation is increasingly emphasized
FIG. 2. Nearest neighbor separation distribution functions forWith decreasing temperature. Figure 4 displays the distribu-
the 2D and Q2D models for different densities ’t=0.55 and  tions of colloid particles along for several densities at fixed
0.50, respectively. At these temperatures the density ranges of ti€mperature and several temperatures at fixed density. At any
solid 1-solid Il coexistence regions afé.00—1.047 and (1.00—  given temperature above the critical point the distribution
1.050 for the 2D and Q2D systems, respectively. alongz separates into two layers with increasing density as

100

distributiqn
2
T
1

8
T

7

80

distribution
& 8

20~

. iy | i
01 1.05 11 1.15,
nearest neighbor separation
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FIG. 5. Lateral pressung" versusp* for different temperatures
8 7 for the 2D and Q2D systems.
£ |
6+ 7 .
.-é ) (dp,/dp)t is much smaller for the Q2D system than for the
L= I i 2D system. The rapid rise ip, signals the separation at
J which there is onset of the repulsive component of the MR
2b - potential. In the Q2D case the stress induced by the repulsive
I part of the MR potential is relieved via the system’s separa-
ol © tion into two layers.
0.2 0.2

We note that the high density side of the solid I-solid Il
coexistence line is nearly vertical. For the strictly 2D system

FIG. 4. Distribution of colloid particles along theaxis (a) at the density along this part of the coexistence line is
T* =0.50 for various densities; bold and regular lines correspond t* =1.0470-0.0005. For the Q2D system the density along
the solid | and solid Il phase, respectivelfh) for solid Il at  thig part of the coexistence line is slightly higher,
p*=1.051 for various temperatures; an@d) for solid Il at p* =1.0505+0.0005.
p"=1.059 for various temperatures. Itis clear that converting a 2D system to a Q2D system by

permitting out-of-plane motion leads to a shift of some of the

each particle becomes increasingly more confined to one sidghase boundaries to higher density. These shifts are most
of the cell. Below the critical point the same behavior isvisible for the low density portion of the phase boundaries
observed separately for the solid | phase and the solid Wwhere solid Il is involved. The coexistence region not in-
phase but when solid | changes into solid Il particles arevolving solid Il, the liquid—solid | coexistence, is very nearly
forced into the centelFig. 4a)]. As temperature decreases, the same for the 2D and Q2D systems. The introduction of
and the entropic demands of the system diminish, the distrithe out-of-plane motion increases the entropy of the phase
bution alongz becomes even more centralized, so a greatebut the gain in entropy is uneven among different phases.
fraction of particles can occupy the attractive well of the MR The mean square amplitude of the out-of-plane displacement
potential[Fig. 4(b)]. The temperature dependent behavior ofis nearly density independent across the liquid—solid | coex-
the distribution alongz is reversed at only slightly higher istence as is the distribution alory However, when the
density; particles become increasingly more confined to onéquid or solid | crosses to the solid Il phase the mean square

side of the cellFig. 4(c)]. amplitude of the out-of-plane displacement decred&és.
In the solid I-solid Il coexistence region in both the 2D 3) and the distribution along (Fig. 4) is forced into a mono-
and Q2D systems the longitudin@h the plang pressurep, layer aroundz=0 so as to reduce interparticle distance, al-

[Eqg. (30)] drops dramatically(Fig. 5. As expected, as the lowing more particles to occupy the attractive well of the
density is increased further there is a rapid rise in the longiMR potential; the entropy contribution to the free energy is
tudinal pressure in the Q2D system, but the derivativesacrificed to gain the enthalpy contribution.
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3 T 200 T T T T T T T
N — p*=1.051
AN — p*=1.067
A -~ p*=1.080
N\ - p*=1.110
* \\
N e NN , £ | Th025
*. e T*m().50 \\\\ o g
< |2D e ~Ji D100 -
i E
%’
. ol g . 1 L A
1 1.01 1.02 1.03 1.04 1.05
. nearest neighbor separation
é — gjgg FIG. 7. Nearest neighbor separation distribution functions for
) - T*=0.50 the 2D system af* =0.25 for various densities across the solid
| T7=0.45 ll—solid 1l coexistence regiori1.051<p* <1.067). Bold line cor-
R responds to the nearest neighbor separation distribution function of
"""""""""""""""""" solid 1l.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ transition. To understand the nature of the solid II—solid IlI
transition we concentrate on results for the 2D system for

which the transition point can be identified with precision.
The distribution of nearest neighbor separations in the 2D
system at the solid II-solid Il transition is unimodal for
Solid Il and bimodal for solid 1l with the much larger peak
corresponding to the minimum and the smaller peak to the
soft repulsive component of the MR potenti&lg. 7). As the
Further information concerning differences between thejensity of solid Il increases, the distribution eventually be-
phase diagrams of the 2D and Q2D model colloid systemgomes unimodal with all interparticle separations corre-
can be obtained from analysis of the free energy densitgponding to the position of the soft repulsive component of
versus density curves. Figure 6 displays, for the solid I-solidhe MR potential. This indicates that solid II—solid Il tran-
Il coexistence regiona* (p*)— yp* versusp*, whereyis  sition is induced by the soft repulsive component of the MR
an arbitrary constant; the subtraction g§* from a*(p*)  potential; particles begin to climb the repulsive potential at
does not change the common tangent construction. In theigh density when the lattice constant is less than the mini-
strictly 2D system there are either on&*(>0.60) or two ~Mum in the MR potential. _
(T*<0.60) minima ofa*(p*) in the density range dis- Another consequence of the repulsive component of the
played. The density region between two minima correspondB&r potential at high density for both the 2D and Q2D sys-
to phase coexistence. At the critical temperature the two frelMS is the condition dp,/dT),<0 as seen in Fig. 5.
energy minima merge into one. Clearly the critical point for (?P1/T),<0 is equivalent to ¢s/dp)r>0, wheres is the
the solid I-solid Il transition is close td* =0.6 in this enltropy per partl_clle.foé:llmblngdth(;,-] repulsive ’potentlal par-
system. In the Q2D system there are ofi £0.60), two ticles gain spatial freedom and the system’s entropy In-

(0.60>T*>0.53), or three T* <0.53) minima ofa* (p*) creases. This condition appears to hold for all temperatures

in the density range displayed. For three minima two IOOS_stud|ed in this paper and spans the density range from the

ibl . b db | close packed density tp*~1.1. When the temperature is
sible tangent constructions can be effected but only one cofg,, enough, the soft repulsion component of the interaction
responds to stable phases.

. ) is significant enough to induce a first-order phase transition
Both the 2D and Q2D systems support solid Il—-solid 1ll 1 the solid 11l phase.

isostructural transitions at high density. This phase transition |n the Q2D system the solid ll—-solid IIl transition is
can be inferred, for the 2D system, by examining the laterahifted to higher density and lower temperature as a result of
pressure in Fig. 5 and the phase boundaries of this transitiogut-of-plane motion. Before particles start climbing the bar-
are indicated in Fig. 1 at densities higher than that of pureier of the pair potential, they separate into two layers along
solid 1I; the critical temperature for this transition is about z at both sides of the cell thereby extending the density range
T*~0.45. Statistical fluctuations of the free energy pre-in which particles can occupy the minimum of the pair po-
vented us from computing the phase boundaries for the Q2Eential, hence shifting the solid Il—solid Il transition to
system by the common tangent construction. Neverthelesgjgher density. The lateral pressure of the Q2D system in
the van der Waals loop of the lateral pressur&’at0.25 for  Fig. 5 (insed displays two plateaus. The low density plateau
the Q2D systentinset to Fig. % indicates the presence of a corresponds to the separation of the solid Il phase into layers

FIG. 6. Free energy densigf minus the linear fityp* vs p for
different temperatures for the 2D and Q2D systems displaying th
solid I-solid Il coexistence region.

061405-9



D. FRYDEL AND S. A. RICE PHYSICAL REVIEW E68, 061405 (2003

TABLE I. Lateral pressure; , shear modulug.*, bulk modu- TABLE Il. Lateral pressure; , shear modulug*, bulk modu-
lus B* = p* dpf'/ dp* , and elastic constat/167 as a function of  lus B* =p* dp{"/dp*, and elastic constamt/16m as a function of
the density for 2D aff* =1.00. the density for 2D aff* =0.60.

& * B* :P*(ﬁprfl) * B*:p*(aptﬁt)

p sk ap o K/16m p* pr ap* w K/16m
0.890 8.703:0.002 40.4:0.4 18.6:0.2 1.32:0.04 0.900 4.9980.002 20.1*0.7 11.6:0.2 1.2:0.1
0.900 9.15%:0.002 44.30.4 22.0:0.1 1.50:0.03 0910 5.2450.002 22.80.4 13.9-0.2 1.45:0.07
0.910 9.6710.002 49.%0.4 25.8:0.1 1.70:0.03 0.920 5.50%:0.002  25.9-0.4 16.3+0.1 1.67:0.06
0.920 10.24%*0.002 54904 30.4£0.1 1.96+0.03 0.930 5.826:0.002 29.404 19.6:0.1 1.93+0.06
0.930 10.8760.002 62.6:0.4 35.5:0.1 2.23:0.03 0.940 6.1490.002 33.204 23.5:0.1 2.24:0.06
0.940 11.5890.002 70.70.4 42.2-0.1 2.58:0.04 0.950 6.524:0.002 37.604 28.3t0.1 2.6G:0.06
0.950 12.3940.002 81.204 50.6:0.1 3.0x0.04 0.960 6.934:0.002 42.50.4 34.20.1 3.02:0.06
0.960 13.30%+0.002 94.30.4 60.5-0.2 3.53t0.04 0.970 7.4140.002 48.2:0.4 42.5-0.1 3.56+0.06
0.970 14.3630.002 110.30.4 73.70.2 4.18:0.04 0.980 7.916¢0.003 54.%0.4 53.20.1 4.19+0.06
0.980 15.5850.002 130.40.4 90.1-0.3 5.02£t0.04  0.990 8.5020.003 64.7#0.4 68.8:0.2 5.00-0.07
0.990 17.0240.003 156.2-0.4 111.9-0.4 6.05-0.05  1.000 9.19%0.003 68.70.4 89.6-0.3 5.95-0.08

1.000 18.7640.003 191.20.4 143.5:0.4 7.530.05 1.010 9.886:0.003 77.220.4 124.6:0.4 7.23:0.09
1.010 20.9150.003 243.1%+0.4 188.%-0.4 9.65:0.05 1.020 10.699:0.004 86.7-0.4 186.72-0.4 8.89-0.09

1.020 23.7120.003 329.%0.4 258.9-0.4 13.06-0.06 1.030 11.5980.005 97.30.4 3151 11.1+0.1
1.030 27.6150.004 493.6:0.4 373.6:0.4 18.970.06 1.040 12.2220.008 7841

1.040 33.786:0.005 567.30.4 1.050 43.4740.007 37023

1.050 45.2980.005 864.50.8 1.060 73.4610.006 134G1

1.060 64.34%0.006 1048.%0.8

chemical potentialof either system, although we could get
. . o closer for the 2D than for the Q2D system. In neither system
and the high density plateau corresponds to climbing the soff, the calculated values d¢/16m derived from the bare
repulsion of the pair potential. elastic constants fall below unity before the transition density
is reached.

We now consider the calculated values of the renormal-
ized elastic constants. Figure 8 sholysas a function of the
density for the 2D and Q2D systems. For both systems, near

i NEF [T ~~
Because of the prominent role in the KTHNY theory of the transition densitfe; /T* ~6, a value safely larger than

e : . .
2D melting that is played by renormalization of the system’[he limit Ec/T* =2.84 below which grain boundary prolif-

elastic constants, we have calculated the bare and renorm&ration is predicted to generate a first-order melting transi-

ized Lameconstants for the 2D and Q2D model Systemstlon. To obtain the dislocation unbinding melting density we

described in this paper. Our calculations of the bare elastifitted our calculated values df and E; as a functions of

constants were based on simulation runs with the same nurf€nSity to convenient polynomials; these polynomial fits
ber of particles as lattice sites. In such a system the numbdYere used as input data for the KTHNY recursion relations

of vacancies must equal the number of interstitials at allE9- (3D]. The KTHNY recursion equations were then
times. The simulation was always started from the perfect,SOI\’ed n_umencally via Euler -d|scret|z_at|0n to obtain .the
defect-free, crystal obtained by straining the triangular latticd€normalized value ok =Kg. Figure 9 displays the density
by £y, We have verified, from model simulations with arti- dependencies dkg for the 2D and Q2D systems. In each
ficially large numbers. of vacancies, th{at for our systems the TABLE IIl. Lateral pressure} , shear modulug*, bulk modu-
calculated bare elastic constants are insensitive to the prefgrs B* = p* ap;"/dp*, and elastic constaiit/16m as a function of
ence of vacancies. The results of our calculations are dighe density for 2D af™* =0.50.

IV. ELASTIC CONSTANTS: A TEST OF THE KTHNY
PREDICTIONS

played in Table I, Il, and Il for the 2D system, for tempera-
turesT* =1.00, 0.60, and 0.50, respectively, and in Tables e
IV, V, and VI for the Q2D system for temperaturds o pF B*=p ((7'7) ot K/16m

=1.00, 0.60, and 0.50, respectively. The uncertainties in the
lateral pressurep, and shear modulu8 quoted in these 0.910 4.02%0.002 15.80.2 9.6:0.3 1.20-0.07
tables are the statistical errors associated with finite time col8.920  4.196:0.002 17.50.2 12.0-0.1 1.42-0.05
lection of values of fluctuating quantities. The uncertainty0.930  4.40%0.002 19.30.2 14.5-0.1 1.64:0.05
guoted for the bulk modulus was estimated by changing the.940 4.6210.002 21.30.2 17.2:0.2 1.86-0.05
form of the polynomial fit to pressure. Note that we werep.950 4.85%0.002 23.5:0.2 21.0:0.2 2.15-0.05
unable to calculate elastic constants very close to the transgr960  5.129-0.002 25.6-0.2 258-0.2 2.470.05
tion densitieglocated by the condition of equal pressure and
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TABLE IV. Lateral pressure; , shear modulug*, bulk modu-
lus B* = p* dpf'/ dp* , and elastic constamt/16m as a function of

the density for Q2D af™* =1.00.

PHYSICAL REVIEW E 68, 061405 (2003

TABLE VI. Lateral pressurep;, shear modulusu*, bulk
modulusB* = p* dpf’/ dp* , and elastic constamt/16 as a func-
tion of the density for Q2D at* =0.50.

_ *(ﬂpfﬁt . *((7prffit)

o* P g ap* uw* K/16m p* Py B =p ap* w K/16
0.900 7.466:0.003 35.¢20.2 16.740.1 1.39:0.02 0.920 3.446:0.002 14.1+0.2 9.2:0.2 1.38t0.07
0.910 7.8620.003 38.7%#0.2 19.9:0.1  1.59:0.02 0.930 3.5950.002 15.6:0.2 11.2:0.1 1.54t0.05
0.920 8.30&0.003 43.2:0.2 23.1:0.1  1.8Gt0.02 0.940 3.781*0.002 17.1+0.2 13.2:0.1 1.75-0.05
0.930 8.81&:0.003 48.6:0.2 27.30.1 2.0#0.03 0.950 3.966:0.002 18.80.2 16.6:0.1 2.0:-0.04
0.940 9.363:0.003 55.2:0.2 31.8:0.1 2.36:0.03 0.960 4.17%*0.002 20.7#0.2 19.4:0.1 2.30:0.05
0.950 9.98%0.004 63.1:0.2 38.0:0.1 2.75:0.03 0.970 4.3990.002 22.7%0.2 23.4£0.1 2.62:0.06
0.960 10.696:0.004 72.6:0.2 45.2-0.1 3.20:0.03 0.980 4.647%0.002 24.90.2 29.1xr0.2 3.0x0.06
0.970 11.50%0.004 84.10.2 54.6:0.1 3.76t0.03 0.990 4.9170.002 27.20.2 36.5-0.2 3.47:0.06
0.980 12.42%#0.004 97.90.2 66.6:0.1 4.46:0.03 1.000 5.18@:0.002 29.8:0.2 48.0:0.2 4.05t0.06
0.990 13.5150.004 117.50.2 82.6:0.1 5.40:0.03
1.000 14.8180.004 142.#0.2 103.9£0.2  6.62:0.03
1.010 16.38#0.005 175.40.2 132.*0.3 8.24:0.04 and whenT*=1.00 and 0.50 the ordinary thermodynamic
1.020 18.3540.005 227.60.2 174.8-0.3 10.670.05 first-order transition from the solid to the hexatic phase pre-
1.030 20.96%0.005 316.90.2 240.9-0.4 14.65-0.05 empts the KTHNY transition between those phases. Our re-
1.040 24.7640.005 345.40.7 sult for T* =0.60 is sensibly the same as found by Sengupta,
1.050 30.876:0.005 516.6:0.7 Nielaba, and Bindef23] and by Watanabet al.[24] for the
1.060 41.4290.005 719.2-0.8 2D assembly of hard disks. On the other hand, for the Q2D

part of the figure the vertical lines mark the density at whic
we located a transition by use of the thermodynamic condi-
tion of equality of pressure and chemical potential. Starting

system, again moving from high to low density, we find that
whenT*=1.00 and 0.50 the ordinary thermodynamic first-
horder transition from the solid to the hexatic phase preempts
.the KTHNY transition between those phases.
It is also interesting to examine the elastic constants at

with the 2D system, and moving from high to low density,

we find that whenT* =0.60 the KTHNY theory barely pre-
empts the first-order melting transition from solid to hexatic,

TABLE V. Lateral pressur@;] , shear modulug.*, bulk modu-
lus B* = p* dpf s/ dp* , and elastic constamt/16m as a function of

the density for Q2D aT™* =0.60.

. *(ﬁpfﬁt)

p* pr P ap* u* K/16m
0.900 4.1040.002 16.90.2
0.910 4.2830.002 18.70.2 10.6:0.1 1.370.04
0.920 4.51%0.002 20.7-0.2 12.6:0.1 1.56-0.04
0.930 4.7440.002 23.:0.2 15.0:0.1 1.80-0.04
0.940 5.006:0.002 25.80.2 17.8:0.1 2.06-0.04
0.950 5.299-0.002 29.:0.2 21.1+0.1 2.36:0.04
0.960 5.6150.003 32.80.2 24.6:0.2 2.710.05
0.970 5.976:0.003 37.30.2 31.4:0.1 3.23:0.04
0.980 6.3990.003 42.6-0.2 39.G:t0.1 3.82:0.04
0.990 6.8440.003 48.90.2 48.6:0.2 4.52t0.06
1.000 7.384:0.003 56.30.2 63.2:0.3 5.47:0.06
1.010 7.9670.003 65.:0.2 85.9:0.3 6.73:0.07
1.020 8.674-0.004 75.2:0.2 120.3:0.7 8.34t0.1
1.030 9.456:0.004 87.3%0.2 189.2:0.7 10.66:-0.1
1.040 10.51%0.005 3472
1.050 14.6080.007 11263
1.060 39.6730.009 14123

10
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FIG. 8. Core energyes/T* for the 2D and Q2D systems at
T*=1.00, 0.60, and 0.50 as a function of density. Note that
EX/T*>2.84. The vertical lines mark the first-order melting
density.
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K/i6n
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p*

FIG. 10. Fractions of six-coordinated particlgsas a function
of density for the 2D and Q2D systemsTdt=1.00, 0.60, and 0.50;
fg(T*=0.60) andfg(T*=0.50) are shifted byAfs=0.05 and
Afg=0.1, respectively, to capture the influence of the out-of-plane
motion for each temperature.

K/i6r

p* the T* = 0.55 isotherm does not. At the density that this iso-

FIG. 9. Renormalization oK/167 (bold lineg obtained from therm is “flattest,” p*=1.040, we find B*=19.0=0.2,
the recursion relation for the 2D and Q2D systemsTat=1.00, M =322%2, andK/167=3.6+0.1. It seems that the system
0.60, and 0.50 as a function of density. Symbols indicate calculateW€ have studied supports only a very small region with
K/167 data points. Regular width lines are obtained from fitting K/16m <1, and the resolution in density of our simulations
data points. The vertical lines mark the first-order melting densitiesfails to capture its presence.

temperatures below the estimated triple point temperature
T3 ~0.45. The coexistence region far <Tj differs from V. IDENTIFYING THE HEXATIC PHASE

that for T*>T3 in that the particle configurations clearly  arguably the most interesting feature of packing in a
indicate the presence of two distinct phases. Wherjense 2D system is the existence of a hexatic phase. We
p*=1.051, slightly above the melting density,(T*)  examined our simulation data with an eye toward identifying
=1.0505, we find thaK/16m=755+3. Moreover, as the \hen a phase found in the 2D and Q2D systems we studied
melting density is approached from abokél6ém increases has hexatic structure. To make this identification we exam-
(at p*=1.055,K/16m=381+4 and atp* =1.060,K/16m  ined the bond orientation order, the structure function, and
=183+3) which is the opposite behavior to that observedthe g-dependent shape of the diffraction peak for both 2D
for temperatures abovE; . and Q2D systems.

For both the 2D and Q2D systems®&t=0.60 and 0.50 We start our analysis with examination of the defect struc-
there is a density region of the solid | phase whBre . ture revealed by the Voronoi mapping of the real space con-
(Tables 11, 11I, V, and V). The conditionB< u generates a figuration of the particles in the 2D and Q2D systems. This
negative value for Poisson’s ratop=(B—u)/(B+u). A mapping generates a space covering set of polygons. A per-
solid that is characterized byp<<O will, if stretched along fect hexagonal crystal has a Voronoi map with only six-sided
one direction, expand in the transverse direction. figures. Polygons in the Voronoi map that have fewer or

At the critical pointB=0 and in a finite region surround- more than six sides are identified as defects. A decrease in
ing the critical pointB is small enough that the combination temperature shift$g(p*) to greaterp* while keeping the
of elastic constants that defink$16 is less than 1. Outside shape of the curve the same. One consequence of this shift is
this region, and close to the melting line, our calculationsan increase in melting density with decreasing temperature.
never yield a value oK/16s that is less than 1. Th&* Figure 10 compare$g in the 2D and Q2D systems as a
=0.60 isotherm of the 2D system displays a van der Waal$unction of density at several temperatures. Juxtaposition of
loop that is indicative of a first-order solid I1—solid Il transi- the fg(p*) curves of the 2D and Q2D systems shows that
tion. The T*=0.62 isotherm of the 2D system no longer allowing out-of-plane motiofwhen 2D=Q2D) produces a
displays a van der Waals loop, and at the density that thishift similar to that produced when the temperature is de-
isotherm is “flattest,” p*=1.035, we find B*=166+2, creased in either of the model systems.
w*=456+2, andK /167 =19.6+0.4. TheT* = 0.54 isotherm The local orientational order parameter for particles
of the Q2D system displays a van der Waals loop, whereadefined by[5,6]
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FIG. 11. Bond orientation parameter susceptibiliyy as a func-

) ; FIG. 12. & andcyg, c being an arbitrary constant, together
tion of density for the 2D and Q2D systems.

with the best fits for KTHNY behavior as a function of density for

the 2D and Q2D systems. The critical valuepbfare visualized by

) vertical lines. Dotted vertical line is the freezing density from free

Yei= n 21 exp(6i 6;), (35 energy calculation. We used points in the ranges Gs§86<0.850
He= and 0.806=p* <0.855 for the 2D and Q2D systems, respectively, to

where the sum ovef is over then; nearest neighbors of Make the fit.
particle i, and 6;; is the angle formed by the linébond

N

between particlesandj and an arbitrary but fixed reference o(t)=agzexp(bt ). (39
direction. The global bond orientation order parameter is de-
fined by The bond orientation parameter susceptibility also diverges
as
N
1
Vo= Ni; Yeil- (36) xo(t)=a,expb,t?), (39
The susceptibility of the bond orientation paramejgy,  Wherét=pi_n—p. In the hexatic phase the bond orientation
which measures the size of the fluctuationsHg, is correlation function decays as 7s”); when p=p,_, the
value of the exponent is)g=1/4. In the thermodynamic
X6:|\|(<xp§>_<qf6>2)_ (37) limit, both the liquid phase and the hexatic phase have

(¥4)=0; henceys is nearly equal td¥3). At the melting
For densities less than the transition dengity,,,, KTHNY density (V) assumes a finite value and increases toward
theory predicts that the bond orientation correlation functiorunity as the density increases. Near the freezing transition, as
decays as expf{r/&) with a correlation length that diverges &g becomes comparable with a linear dimension of the simu-

asp— p,_p from lower density: lation box, the model system becomes susceptible to an un-
TABLE VII. p} obtained from best fit for the critical behavior of the correlation lengfthand suscep-
tibility .
System T Fit Range pi Range oy max/\VA)
2D 1.00 & 0.800-0.850 0.864 0.820-0.850 0.862 0.22
X6 0.800-0.850 0.865 0.820-0.850 0.864 0.22
Q2D 1.00 &s 0.800-0.855 0.869 0.820-0.855 0.868 0.22
Xs 0.800-0.855 0.870 0.820-0.855 0.870 0.22
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FIG_. 13. q*-dep_endent structure functid (g*) for densities FIG. 14. g*-dependent structure functic (q*) for densities
spanning the coexistence regigi,=0.860, 0.870, and 0.880, for  gyanning the coexistence regigit,=0.860, 0.870, and 0.880, for

T*=1.00, 0.60, and 0.50 for the 2D systeBY.(q*) curves were 1+ _1 00, 0.60, and 0.50 for the Q2D syste®i(q*) curves were
shifted to be fitted on one graph. shifted to be fitted on one graph.

physical transition. Discrimination between a real and an un-
physical transition requires a careful analysis of the size ge(r)=ar” "sexp(—r/&), (40)
dependence of the behavior of the system studied.

We now evaluate the parameters that appear in th#herer is the actual particle-particle separation. The suscep-
KTHNY mechanical instability description of the melting tibility was calculated from its thermodynamic limite
transition and attempt to capture the temperature dependeﬁt(‘PEZ;)-
behavior of the “would-be” transition density for compari-  Figure 11 displayss as a function of density at various
son with the temperature dependent freezing densities evaltemperatures for the 2D and Q2D systems.TAsdecreases
ated from the thermodynamic criterion of phase equilibrium,the divergence oj is displaced to higher density, thereby
namely, equality of the pressure and chemical potentials ofausing the density of the transition to increase. Note that at
the two phases. To accomplish this task we use the bonany given temperature the passage from a 2D to a Q2D sys-
susceptibilityys and the correlation length; as monitors of  tem produces a similar effect, namely, the high density limit
the transition. Moreover, we use only data for densitiesof the stability of the more disordered phase is increased.
where finite-size effects are minimal, that is, where the corThis behavior is in agreement with the results of our free
relation length is significantly smaller than the box edgeenergy calculations for these systems.
length. These data were fitted to E¢38) and(39) to locate The &g and ¢ data were fitted to the analytic forms dis-
the transition density. The correlation length was obtainedlayed in Eqs(38) and(39), respectively, wheregyg was set
from fitting the bond orientation correlation function with an to 1/4. In each case the last data point used corresponds to
ansatz of the fornj25] the last state point for which the instantaneous valu& gf
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fluctuates around a single valdet the next data point’'s  wherer is measured in thay plane. In the hexatic phase
fluctuates about two distinct valuesVe found that the ratio  S(q) has sixfold modulation as a function of the anglg
&1/ A for the last usable data point is about 0.2. We notebetween a reference axis and the vectorhe relevant func-
that Jastef25] employed a tighter bound, namelgs/\.A  tion for our purpose is the average $fq) over the angular
<0.06, to select simulation data that are free of finite-sizeange 6< 6,< x/3:

effects.

The results of the fits ofs and ¢ for the 2D and Q2D
systems withT* = 1.00 are collected in Table VII. The tran-
sition densities obtained frongg are systematically lower
than those obtained fromgg by 0.001. A fitting that omits
some data points that are furthest from the transition density
shifts the predicted 2D transition density to slightly smaller_l_he results of this calculation d8(q) and the fits of the

values, but has no effect on the predicted Q2D transition X
densities. The values af, and ys obtained in the fashion P&aks to Eqsi4l) and(42) are shown for different tempera-

described, and the fitted curves, are displayed in Fig. 12ures and densities in Fig. 13 for the 2D system and in Fig.
These figures show that the transition density predicted by4 for the Q2D system. The solid and dashed lines are, re-
the KTHNY criterion falls in the coexistence region pre- Spectively, fits to the Lorentzian and square-root-Lorentzian
dicted from the free energy calculations; the overestimate dine shapes. For the same thermodynamic state the first peak
the transition density is aboudp* =0.02. in the structure function of the Q2D system is broader than
We now examine the shapes of the peaks in the structurédie corresponding peak in the structure function of the 2D
function. In a conventional 2D or 3D liquid tliedependence  system. Regardless of temperature and dimensionality, the
of S(g) near the peaks is well approximated by the Lorent-density at which the square-root-Lorentzian function pro-
zian function vides a better fit to the peak shapepis~0.87. Analysis of
the free energies of the liquid and solid phases yields a first-
o 1 order transition with liquid density that varies only slightly
(q—0o)°+(1/&) " with temperature and dimensionality andpfs~0.85 as long
o - _ asT*=0.50. To better visualize the location of the liquid-to-
In contrast, close to the hexatic-liquid transition, in thepnexatic transition determined from the fit togedependent
hexatic phase, the dependence o8(q) near the peaks is strycture function in relation to the liquid—solid | coexistence
predicted to have the forii26] region predicted from the free energy calculations we con-
nect the density points* =0.87 atT* =1.00, 0.60, and 0.50
on the phase diagram graghig. 1).

3 (73
S(q)=;JO d6,S(q). (44)

S(a) (41)

S(q)= (42

1 1/2
(q_QO)2+(1/§)} '

where ¢ is the positional correlation length argy, is the
maximum of a peak. The structure function was calculated
by explicit evaluation of the expression

ZNl sin(q~ri))2>,
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